Articles | Volume 24, issue 1
https://doi.org/10.5194/fr-24-171-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/fr-24-171-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Baghuk Mountain (Central Iran): high-resolution stratigraphy of a continuous Central Tethyan Permian–Triassic boundary section
Dieter Korn
CORRESPONDING AUTHOR
Museum für Naturkunde Berlin, Leibniz Institute for Evolution and
Biodiversity Science, Invalidenstraße 43, 10115 Berlin, Germany
Lucyna Leda
Museum für Naturkunde Berlin, Leibniz Institute for Evolution and
Biodiversity Science, Invalidenstraße 43, 10115 Berlin, Germany
Franziska Heuer
Museum für Naturkunde Berlin, Leibniz Institute for Evolution and
Biodiversity Science, Invalidenstraße 43, 10115 Berlin, Germany
Hemen Moradi Salimi
Museum für Naturkunde Berlin, Leibniz Institute for Evolution and
Biodiversity Science, Invalidenstraße 43, 10115 Berlin, Germany
Geology Department, Faculty of Science, University of Isfahan,
Isfahan, Iran
Elham Farshid
Department of Geology, North Tehran Branch, Islamic Azad University,
Tehran, Iran
Amir Akbari
Department of Geology, Isfahan (Khorasgan) Branch, Islamic Azad University, Isfahan, Iran
Martin Schobben
Marine Palynology and Paleoceanography, Utrecht University,
Princetonlaan, Utrecht, the Netherlands
Abbas Ghaderi
Department of Geology, Faculty of Science, Ferdowsi University of
Mashhad, P.O. Box 9177948974, Mashhad, Iran
Ulrich Struck
Museum für Naturkunde Berlin, Leibniz Institute for Evolution and
Biodiversity Science, Invalidenstraße 43, 10115 Berlin, Germany
Jana Gliwa
Museum für Naturkunde Berlin, Leibniz Institute for Evolution and
Biodiversity Science, Invalidenstraße 43, 10115 Berlin, Germany
David Ware
Museum für Naturkunde Berlin, Leibniz Institute for Evolution and
Biodiversity Science, Invalidenstraße 43, 10115 Berlin, Germany
Museum für Naturkunde, Otto-von-Guericke-Straße 68–73, 39104
Magdeburg, Germany
Vachik Hairapetian
Department of Geology, Isfahan (Khorasgan) Branch, Islamic Azad University, Isfahan, Iran
Related authors
Jana Gliwa, Abbas Ghaderi, Lucyna Leda, Martin Schobben, Sara Tomás, William J. Foster, Marie-Béatrice Forel, Nahideh Ghanizadeh Tabrizi, Stephen E. Grasby, Ulrich Struck, Ali Reza Ashouri, and Dieter Korn
Foss. Rec., 23, 33–69, https://doi.org/10.5194/fr-23-33-2020, https://doi.org/10.5194/fr-23-33-2020, 2020
Short summary
Short summary
The Permian–Triassic boundary section of the Aras Valley (NW Iran) shows a complete sedimentary succession, bearing great potential for studying the change of environmental conditions that paralleled the end-Permian mass extinction. The lithological succession; carbonate microfacies characteristics; stable isotope dynamics; and conodont, ostracod, and ammonoid stratigraphy allow for a detailed study of the chronological succession of the events.
Nariman Mahmoodi, Ulrich Struck, Michael Schneider, and Christoph Merz
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2024-214, https://doi.org/10.5194/hess-2024-214, 2024
Preprint under review for HESS
Short summary
Short summary
Understanding water balance in lakes is complex. We studied Lake Gross Glienicke in Germany, using an innovative method that combines isotope measurements and a hydrological model to improve estimates of water inflow and evaporation. Our findings show a high correlation between the two approaches, leading to better predictions of lake water dynamics. This research offers a reliable way to evaluate the model outputs.
Gabrielle Rodrigues de Faria, David Lazarus, Johan Renaudie, Jessica Stammeier, Volkan Özen, and Ulrich Struck
Clim. Past, 20, 1327–1348, https://doi.org/10.5194/cp-20-1327-2024, https://doi.org/10.5194/cp-20-1327-2024, 2024
Short summary
Short summary
Export productivity is part of the global carbon cycle, influencing the climate system via biological pump. About 34 million years ago, the Earth's climate experienced a climate transition from a greenhouse state to an icehouse state with the onset of ice sheets in Antarctica. Our study shows important productivity events in the Southern Ocean preceding this climatic shift. Our findings strongly indicate that the biological pump potentially played an important role in that past climate change.
Richard M. Besen, Kathleen Schindler, Andrew S. Gale, and Ulrich Struck
J. Micropalaeontol., 42, 117–146, https://doi.org/10.5194/jm-42-117-2023, https://doi.org/10.5194/jm-42-117-2023, 2023
Short summary
Short summary
Turonian–Coniacian agglutinated foraminiferal assemblages from calcareous deposits from the temperate European shelf realm were studied. Acmes of agglutinated foraminifera correlate between different sections and can be used for paleoenvironmental analysis expressing inter-regional changes. Agglutinated foraminiferal morphogroups display a gradual shift from Turonian oligotrophic environments towards more mesotrophic conditions in the latest Turonian and Coniacian.
Gerhard Franz, Vladimir Khomenko, Peter Lyckberg, Vsevolod Chournousenko, Ulrich Struck, Ulrich Gernert, and Jörg Nissen
Biogeosciences, 20, 1901–1924, https://doi.org/10.5194/bg-20-1901-2023, https://doi.org/10.5194/bg-20-1901-2023, 2023
Short summary
Short summary
This research describes the occurrence of Precambrian fossils, with exceptionally well preserved morphology in 3D. These microfossils reach a size of millimeters (possibly up to centimeters) and thus indicate the presence of multicellular eukaryotes. Many of them are filamentous, but other types were also found. These fossils lived in a depth of several hundred meters and thus provide good evidence of a continental the deep biosphere, from a time generally considered as the
boring billion.
Richard M. Besen, Ulrich Struck, and Ekbert Seibertz
Foss. Rec., 24, 395–441, https://doi.org/10.5194/fr-24-395-2021, https://doi.org/10.5194/fr-24-395-2021, 2021
Short summary
Short summary
The agglutinated foraminiferal fauna in carbonate rocks from the mid-Cretaceous of Lower Saxony is documented and applied to reconstruct former paleoenvironmental conditions. Especially, sea level fluctuations are possible to reconstruct from changes in the foraminiferal record. Differences of the foraminiferal assemblages in different locations, closer or further away from the former coast, are discussed. Described bio-events of the time interval are linked to foraminiferal bio-events.
Jana Gliwa, Abbas Ghaderi, Lucyna Leda, Martin Schobben, Sara Tomás, William J. Foster, Marie-Béatrice Forel, Nahideh Ghanizadeh Tabrizi, Stephen E. Grasby, Ulrich Struck, Ali Reza Ashouri, and Dieter Korn
Foss. Rec., 23, 33–69, https://doi.org/10.5194/fr-23-33-2020, https://doi.org/10.5194/fr-23-33-2020, 2020
Short summary
Short summary
The Permian–Triassic boundary section of the Aras Valley (NW Iran) shows a complete sedimentary succession, bearing great potential for studying the change of environmental conditions that paralleled the end-Permian mass extinction. The lithological succession; carbonate microfacies characteristics; stable isotope dynamics; and conodont, ostracod, and ammonoid stratigraphy allow for a detailed study of the chronological succession of the events.
Martin Schobben, Sebastiaan van de Velde, Jana Gliwa, Lucyna Leda, Dieter Korn, Ulrich Struck, Clemens Vinzenz Ullmann, Vachik Hairapetian, Abbas Ghaderi, Christoph Korte, Robert J. Newton, Simon W. Poulton, and Paul B. Wignall
Clim. Past, 13, 1635–1659, https://doi.org/10.5194/cp-13-1635-2017, https://doi.org/10.5194/cp-13-1635-2017, 2017
Short summary
Short summary
Stratigraphic trends in the carbon isotope composition of calcium carbonate rock can be used as a stratigraphic tool. An important assumption when using these isotope chemical records is that they record a globally universal signal of marine water chemistry. We show that carbon isotope scatter on a confined centimetre stratigraphic scale appears to represent a signal of microbial activity. However, long-term carbon isotope trends are still compatible with a primary isotope imprint.
Related subject area
Earth System Science and Global Change
Aras Valley (northwest Iran): high-resolution stratigraphy of a continuous central Tethyan Permian–Triassic boundary section
Rostrum size differences between Toarcian belemnite battlefields
Facies, origin, and palaeontological inventory of an Early Carboniferous neptunian dyke in the Devonian reef limestone near Rösenbeck (Brilon Anticline, Rhenish Mountains)
Jana Gliwa, Abbas Ghaderi, Lucyna Leda, Martin Schobben, Sara Tomás, William J. Foster, Marie-Béatrice Forel, Nahideh Ghanizadeh Tabrizi, Stephen E. Grasby, Ulrich Struck, Ali Reza Ashouri, and Dieter Korn
Foss. Rec., 23, 33–69, https://doi.org/10.5194/fr-23-33-2020, https://doi.org/10.5194/fr-23-33-2020, 2020
Short summary
Short summary
The Permian–Triassic boundary section of the Aras Valley (NW Iran) shows a complete sedimentary succession, bearing great potential for studying the change of environmental conditions that paralleled the end-Permian mass extinction. The lithological succession; carbonate microfacies characteristics; stable isotope dynamics; and conodont, ostracod, and ammonoid stratigraphy allow for a detailed study of the chronological succession of the events.
Patrícia Rita, Kenneth De Baets, and Martina Schlott
Foss. Rec., 21, 171–182, https://doi.org/10.5194/fr-21-171-2018, https://doi.org/10.5194/fr-21-171-2018, 2018
Short summary
Short summary
With the support of CT data, a morphometric analysis was performed with the aim of investigating the rostrum size differences between two Toarcian belemnite accumulations. A decrease in size from the Early Toarcian to the Middle Toarcian is recognized. It is also demonstrated that diameter-based measurements or maximum preserved length are not reliable proxies for rostrum size, and therefore apical length or three-dimensional approximations are more advisable.
F. Heuer, D. Korn, Z. Belka, and V. Hairapetian
Foss. Rec., 18, 57–72, https://doi.org/10.5194/fr-18-57-2015, https://doi.org/10.5194/fr-18-57-2015, 2015
Short summary
Short summary
The Devonian reef limestone complex of Rösenbeck near Brilon (Rhenish Mountains) shows numerous neptunian dykes and other hollows which have been filled with Carboniferous siliciclastic as well as fossil-rich carbonate sediments with ammonoids, conodonts, and chondrichthyan fish. These carbonates represent erratic blocks of sediments which were deposited in elevated areas but subsequently eroded and transported as erratic blocks into the karstic cavities.
Cited articles
Alroy, J., Aberhan, M., Bottjer, D. J., Foote, M., Fürsich, F. T.,
Harries, P. J., Hendy, A. J. W., Holland, S. M., Ivany, L. C., Kiessling,
W., Kosnik, M. A., Marshall, C. R., McGowan, A. J., Miller, A. I.,
Olszewski, T. D., Patzkowsky, M. E., Peters, S. E., Villier, L., Wagner, P.
J., Bonuso, N., Borkow, P. S., Brenneis, B., Clapham, M. E., Fall, L. M.,
Ferguson, C. A., Hanson, V. L., Krug, A. Z., Layou, K. M., Leckey, E. H.,
Nürnberg, S., Powers, C. M., Sessa, J. A., Simpson, C., Tomasovych, A.,
and Visaggi, C. C.: Phanerozoic trends in the global diversity of marine
invertebrates, Science, 321, 97–100, 2008.
Baghbani, D.: The Permian sequence in the Abadeh region, central Iran,
Occasional Publication, Earth Sciences and Resources Institute, University
of South Carolina, New Series B, 9, 7–22, 1993.
Bando, Y.: Upper Permian and Lower Triassic ammonoids from Abadeh, Central
Iran, Memoirs of the Faculty of Education, Kagawa University, 23, 103–138,
1979.
Bando, Y.: Discovery of Lower Triassic ammonites in the Abadeh region of
Central Iran, Geological Survey of Iran, Report, 49, 73–103, 1981.
Barskov, I. S. and Koroleva, N. V.: Pervaya nakhodka verkhnepermskikh
konodontov na territorii SSSR, Doklady Akademii Nauk SSSR, 194, 933–934,
1970.
Baud, A., Brönnimann, P., and Zaninetti, L.: Addendum, in: Etude lithologique et micropaléontologique de la formation d'Elika dans la coupe d'Aruh, edited by: Zaninetti, L., Brönnimann, P., Bozorgnia, F., and Huber, H., Alborz Central, Iran Septentrional, Archives des Sciences, Genève, 25, 244–248, 1972.
Baud, A., Cirilli, S., and Marcoux, J.: Biotic response to mass extinction:
the lowermost Triassic microbialites, Facies, 36, 238–242, 1997.
Baud, A., Magaritz, M., and Holser, W. T.: Permian-Triassic of the Tethys:
Carbon isotope studies, Geol. Rundsch., 78, 649–677, 1989.
Baud, A., Richoz, S., Brandner, R., Krystyn, L., Heindel, K., Mohtat, T.,
and Mohtat-Aghai, P.: Sponge-microbial buildups: A new look at the enigmatic
basal Triassic “Crystal Layers” of Central Iran, International
Sedimentological Congress 2018, Québec City, 2018.
Baud, A., Richoz, S., Brandner, R., Krystyn, L., Heindel, K., Mohtat, T.,
Mohtat-Aghai, P., and Horacek, M.: Sponge takeover from End-Permian mass
extinction to early Induan time: Records in Central Iran microbial buildups,
Front. Earth Sci., 8, 586210, https://doi.org/10.3389/feart.2021.586210, 2021.
Besse, J., Torcq, F., Gallet, Y., Ricou, L., Krystyn, L., and Saidi, A.:
Late Permian to Late Triassic palaeomagnetic data from Iran: constraints on
the migration of the Iranian block through the Tethyan Ocean and initial
destruction of Pangaea, Geophys. J. Int.l, 135, 77–92, 1998.
Chen, J., Shen, S., Zhang, Y., Angiolini, L., Gorgij, M. N., Crippa, G.,
Wang, W., Zhang, H., Yuan, D., and Li, X.: Abrupt warming in the latest
Permian detected using high-resolution in situ oxygen isotopes of conodont
apatite from Abadeh, central Iran, Palaeogeogr. Palaeocl., 560, 109973, https://doi.org/10.1016/j.palaeo.2020.109973, 2020.
Dai, J. and Zhang, J.: Study on the Permian–Triassic biostratigraphy and
event stratigraphy of northern Sichuan and southern Shaanxi, Ministry of
Geology and Mineral Resources, Geological Memoirs, 2, 1–435, 1989.
Diener, C.: Triadische Cephalopodenfaunen der Ostsibirischen
Küstenprovinz, Mémoires du Comité Géologique St.
Pétersbourg, 14, 1–59, 1895.
Dudás, F. Ö., Yuan, D.-X., Shen, S.-Z., and Bowring, S. A.: A
conodont-based revision of the 87Sr 86Sr seawater curve across the
Permian-Triassic boundary, Palaeogeogr. Palaeocl., 470, 40–53, 2017.
Erwin, D. H.: The great Paleozoic crisis: life and death in the Permian,
Columbia University Press, New York, 327 pp., 1993.
Erwin, D. H.: The Permo-Triassic extinction, Nature, 367, 231–236, 1994.
Erwin, D. H., Bowring, S. A., and Jin, Y.: End-Permian mass extinctions: a
review, Special Papers-Geological Society of America, 356, 363–384, 2002.
Farshid, E., Hamdi, B., Hairapetian, V., and Aghanabati, S. A.: Conodont
biostratigraphy of the Permian-Triassic boundary in the Baghuk mountain
section Northwest of Abadeh, Scientific Quarterly Journal, Geosciences, 25,
285–294, 2016.
Foster, W. J., Heindel, K., Richoz, S., Gliwa, J., Lehrmann, D. J., Baud,
A., Kolar-Jurkovšek, T., Aljinović, D., Jurkovšek, B., Korn, D.,
Martindale, R. C., and Peckmann, J.: Suppressed competitive exclusion
enabled the proliferation of Permian/Triassic boundary microbialites, The
Depositional Record, 6, 62–74, 2020.
Friesenbichler, E., Richoz, S., Baud, A., Krystyn, L., Sahakyan, L.,
Vardanyan, S., Peckmann, J., Reitner, J., and Heindel, K.: Sponge-microbial
buildups from the lowermost Triassic Chanakhchi section in southern Armenia:
Microfacies and stable carbon isotopes, Palaeogeogr. Palaeocl., 490, 653–672, 2018.
Gallet, Y., Krystyn, L., Besse, J., Saidi, A., and Ricou, L. E.: New
constraints on the Upper Permian and Lower Triassic geomagnetic polarity
timescale from the Abadeh section (central Iran), J. Geophys.
Res.-Sol. Ea., 105, 2805–2815, 2000.
Ghaderi, A.: Stratigraphy and paleoecology of the Upper Permian to Permian
– Triassic boundary in the northwest of Iran based on biostratigraphic data
of conodonts and brachiopods, Ferdowsi University of Mashhad, Mashhad, 488
pp., 2014.
Ghaderi, A., Leda, L., Schobben, M., Korn, D., and Ashouri, A. R.: High-resolution stratigraphy of the Changhsingian (Late Permian) successions of NW Iran and the Transcaucasus based on lithological features, conodonts and ammonoids, Foss. Rec., 17, 41–57, https://doi.org/10.5194/fr-17-41-2014, 2014.
Ghaedi, M., Mousavi, N., and Yazdi, M.: Scrutiny and biozonation of Permian
– Triassic boundary in Benarizeh area, north of Abadeh, Second conference
of the Iranian Paleontological Association, 2009.
Ghorbani, M.: The economic geology of Iran: mineral deposits and natural
resources, Springer Science & Business Media, Dordrecht, 569 pp., 2013.
Gilg, H. A., Struck, U., Vennemann, T., and Boni, M.: Phosphoric acid
fractionation factors for smithsonite and cerussite between 25 and
72 ∘C, Geochim. Cosmochim. Ac., 67, 4049–4055, 2003.
Gliwa, J., Ghaderi, A., Leda, L., Schobben, M., Tomás, S., Foster, W.
J., Forel, M.-B., Ghanizadeh Tabrizi, N., Grasby, S. E., Struck, U.,
Ashouri, A. R., and Korn, D.: Aras Valley (northwest Iran): high-resolution
stratigraphy of a continuous central Tethyan Permian–Triassic boundary
section, Foss. Rec., 23, 33–69, 2020.
Hampe, O., Hairapetian, V., Dorka, M., Witzmann, F., Akbari, A. M., and
Korn, D.: A first late Permian fish fauna from Baghuk Mountain (Neo-Tethyan
shelf, central Iran), Bull. Geosci., 88, 1–20, 2013.
Hassanzadeh, J. and Wernicke, B. P.: The Neotethyan Sanandaj-Sirjan zone of
Iran as an archetype for passive margin-arc transitions, Tectonics, 35,
586–621, 2016.
Henderson, C. M., Shilong, M., Shen, S., and Wardlaw, B. R.: Resolution of
the reported Upper Permian conodont occurrences from northwestern Iran,
Permophiles, 51, 2–9, 2008.
Heuer, F., Leda, L., Korn, D., Hairapetian, V., and Moradi Salimi, H.: Early
Triassic microbialites at Baghuk Mountain (Central Iran), Goldschmidt
Conference, Paris 2017, 2017.
Heuer, F., Leda, L., Moradi Salimi, H., Gliwa, J., Hairapetian, V., and
Korn, D.: The Permian-Triassic boundary section at Baghuk Mountain, Central
Iran: carbonate microfacies and depositional environment, Palaeobio. Palaeoenv., submitted, 2021.
Heydari, E. and Hassanzadeh, J.: Deev Jahi model of the Permian–Triassic
boundary mass extinction: a case for gas hydrates as the main cause of
biological crisis on Earth, Sediment. Geol., 163, 147–163, 2003.
Heydari, E., Hassandzadeh, J., and Wade, W.: Geochemistry of central Tethyan
upper Permian and lower Triassic strata, Abadeh region, Iran, Sediment.
Geol., 137, 85–99, 2000.
Heydari, E., Wade, W. J., and Hassanzadeh, J.: Diagenetic origin of carbon
and oxygen isotope compositions of Permian–Triassic boundary strata,
Sediment. Geol., 143, 191–197, 2001.
Heydari, E., Hassanzadeh, J., Wade, W., and Ghazi, A.: Permian–Triassic
boundary interval in the Abadeh section of Iran with implications for mass
extinction: Part 1 – Sedimentology, Palaeogeogr. Palaeocl., 193, 405–423, 2003.
Heydari, E., Arzani, N., and Hassanzadeh, J.: Mantle plume: the invisible
serial killer – application to the Permian–Triassic boundary mass
extinction, Palaeogeogr. Palaeocl., 264, 147–162,
2008.
Heydari, E., Arzani, N., Safaei, M., and Hassanzadeh, J.: Ocean's response
to a changing climate: Clues from variations in carbonate mineralogy across
the Permian–Triassic boundary of the Shareza Section, Iran, Glob.
Planet. Change, 105, 79–90, 2013.
Horacek, M., Richoz, S., Brandner, R., Krystyn, L., and Spötl, C.:
Evidence for recurrent changes in Lower Triassic oceanic circulation of the
Tethys: the δ3C record from marine sections in Iran,
Palaeogeogr. Palaeocl., 252, 355–369, 2007.
Horacek, M., Krystyn, L., and Baud, A.: Comment to Chen et al., 2020:
“Abrupt warming in the latest Permian detected using high-resolution in situ
oxygen isotopes of conodont apatite from Abadeh, central Iran”, Importance
of correct stratigraphic correlation, reporting of existing data and their
scientific interpretation, Permophiles, 70, 33–36, 2021.
Huckriede, R.: Die Conodonten der mediterranen Trias und ihr
stratigraphischer Wert, Paläontol. Z., 32, 141–175, 1958.
Jin, Y., Wang, Y., Wang, W., Shang, Q., Cao, C., and Erwin, D.: Pattern of
marine mass extinction near the Permian-Triassic boundary in South China,
Science, 289, 432–436, 2000.
Kakuwa, Y. and Matsumoto, R.: Cerium negative anomaly just before the
Permian and Triassic boundary event – the upward expansion of anoxia in the
water column, Palaeogeogr. Palaeocl., 229,
335–344, 2006.
Kiessling, W., Schobben, M., Ghaderi, A., Hairapetian, V., Leda, L., and
Korn, D.: Pre–mass extinction decline of latest Permian ammonoids, Geology,
46, 283–286, 2018.
Korn, D. and Ghaderi, A.: The Late Permian araxoceratid ammonoids: a case of
repetitive temporal and spatial unfolding of homoplastic conch characters,
Neues Jahrb. Geol. P.-A., 292,
339–350, 2019.
Korn, D., Ghaderi, A., Leda, L., Schobben, M., and Ashouri, A. R.: The
ammonoids from the Late Permian Paratirolites Limestone of Julfa (East Azerbaijan, Iran),
J. Syst. Palaeontol., 14, 841–890, 2016.
Korn, D., Ghaderi, A., and Ghanizadeh Tabrizi, N.: Early Changhsingian (Late
Permian) ammonoids from NW Iran, Neues Jahrb. Geol.
P.-A., 293, 37–56, 2019.
Korn, D., Ghaderi, A., Ghanizadeh Tabrizi, N., and Gliwa, J.: The
morphospace of Late Permian coiled nautiloids, Lethaia, 53, 154–165, 2020.
Korn, D., Hairapetian, V., Ghaderi, A., Leda, L., Schobben, M., and Akbari,
A.: The Changhsingian (Late Permian) ammonoids from Baghuk Mountain (Central
Iran), Eur. J. Taxon., submitted, 2021.
Korte, C. and Kozur, H. W.: Carbon isotope stratigraphy across the
Permian/Triassic boundary at Jolfa (NW-Iran), Peitlerkofel (Sass de
Pütia, Sass de Putia), Pufels (Bula, Bulla), Tesero (all three Southern
Alps, Italy) and Gerennavár (Bükk Mts., Hungary), J. Alp.
Geol., 47, 119–135, 2005.
Korte, C. and Kozur, H. W.: Carbon-isotope stratigraphy across the
Permian–Triassic boundary: a review, J. Asian Earth Sci., 39,
215–235, 2010.
Korte, C., Kozur, H. W., and Mohtat-Aghai, P.: Dzhulfian to lowerest
Triassic delta δ13C record at the Permian/Triassic boundary
section at Shahreza, Central Iran, Hallesches Jahrbuch für
Geowissenschaften, Reihe B, Beiheft, 18, 73–78, 2004a.
Korte, C., Kozur, H. W., Joachimski, M. M., Strauss, H., Veizer, J., and
Schwark, L.: Carbon, sulfur, oxygen and strontium isotope records, organic
geochemistry and biostratigraphy across the Permian/Triassic boundary in
Abadeh, Iran, Int. J. Earth Sci., 93, 565–581, 2004b.
Korte, C., Pande, P., Kalia, P., Kozur, H. W., Joachimski, M. M., and
Oberhänsli, H.: Massive volcanism at the Permian–Triassic boundary and
its impact on the isotopic composition of the ocean and atmosphere, J. Asian Earth Sci., 37, 293–311, 2010.
Kozur, H. and Pjatakova, M.: Die Conodontenart Anchignathodus parvus n. sp.,
eine wichtige Leitform der basalen Trias, Koninklijke Nederlandse Akademic
van Wetenschappen, Proc. Ser. B, 79, 123–128, 1976.
Kozur, H. W.: Pelagic uppermost Permian and the Permian-Triassic boundary
conodonts of Iran: Part I: taxonomy, Hallesches Jahrbuch für
Geowissenschaften, Reihe B, Beiheft, 18, 39–68, 2004.
Kozur, H. W.: Pelagic uppermost Permian and the Permian-Triassic boundary
conodonts of Iran, Part II: Investigated sections and evaluation of the
conodont faunas, Hallesches Jahrbuch für Geowissenschaften, Reihe B,
Beiheft, 19, 49–86, 2005.
Kozur, H. W.: Biostratigraphy and event stratigraphy in Iran around the
Permian–Triassic Boundary (PTB): implications for the causes of the PTB
biotic crisis, Glob. Planet. Change, 55, 155–176, 2007.
Leda, L.: The Permian-Triassic boundary in the NW-Iranian Transcaucasus and
in Central Iran, Humboldt-Universität zu Berlin, 222 pp.,
https://doi.org/10.18452/21106, 2020.
Leda, L., Korn, D., Ghaderi, A., Hairapetian, V., Struck, U., and Reimold,
W. U.: Lithostratigraphy and carbonate microfacies across the
Permian–Triassic boundary near Julfa (NW Iran) and in the Baghuk Mountains
(Central Iran), Facies, 60, 295–325, 2014.
Liu, X., Wang, W., Shen, S., Gorgij, M. N., Ye, F., Zhang, Y., Furuyama, S.,
Kano, A., and Chen, X.: Late Guadalupian to Lopingian (Permian) carbon and
strontium isotopic chemostratigraphy in the Abadeh section, central Iran,
Gondwana Res., 24, 222–232, 2013.
Luo, G., Algeo, T. J., Huang, J., Zhou, W., Wang, Y., Yang, H., Richoz, S.,
and Xie, S.: Vertical δ13Corg gradients record changes in
planktonic microbial community composition during the end-Permian mass
extinction, Palaeogeogr. Palaeocl., 396, 119–131,
2014.
Mei, S., Zhang, K., and Wardlaw, B. R.: A refined succession of Changhsingian and Griesbachian neogondolellid conodonts from the Meishan section, candidate of the global stratotype section and point of the Permian–Triassic boundary, Palaeogeogr. Palaeocl., 143, 213–226, 1998.
Meyer, K., Yu, M., Jost, A., Kelley, B., and Payne, J.: δ13C
evidence that high primary productivity delayed recovery from end-Permian
mass extinction, Earth Planet. Sc. Lett., 302, 378–384, 2011.
Muttoni, G., Gaetani, M., Kent, D. V., Sciunnach, D., Angiolini, L., Berra,
F., Garzanti, E., Mattei, M., and Zanchi, A.: Opening of the Neo-Tethys
Ocean and the Pangea B to Pangea A transformation during the Permian,
GeoArabia, 14, 17–48, 2009.
Nabavi, M. H.: An introduction to the geology of Iran, Geological Survey of Iran, Tehran, 109 pp., 1976.
Partoazar, H.: Permian-Triassic boundary conodonts from Jolfa-Abadeh Belt
along Northwest and Central Iran, Permophiles, 41, 34–40, 2002.
Richoz, S., Krystyn, L., Baud, A., Brandner, R., Horacek, M., and
Mohtat-Aghai, P.: Permian–Triassic boundary interval in the Middle East
(Iran and N. Oman): Progressive environmental change from detailed carbonate
carbon isotope marine curve and sedimentary evolution, J. Asian
Earth Sci., 39, 236–253, 2010.
Ruban, D. A., Al-Husseini, M. I., and Iwasaki, Y.: Review of Middle east
Paleozoic plate tectonics, GeoArabia, 12, 35–56, 2007.
Ruzhencev, V. E.: Klassifikatsia nadsemeystva Otocerataceae,
Paleontologicheskiy Zhurnal, 1959, 56–67, 1959.
Ruzhencev, V. E.: Klassifikatsia semeystve Araxoceratidae.,
Paleontologicheskiy Zhurnal, 1962, 88–103, 1962.
Ruzhencev, V. E.: Novye dannye o semeystve Araxoceratidae.,
Paleontologicheskiy Zhurnal, 1963, 56–64, 1963.
Ruzhencev, V. E.: Izmenenie organicheskovo mira na rubezhe Paleozoya i
Mezozoyia, in: Razvitie i
smena morskikh organizmov na Rubezhe Paleozoia i Mezozoia, edited by: Ruzhencev, V. E. and Sarycheva, T. G., Trudy
Paleontologicheskogo Instituta Akademiya Nauk SSSR, 108, 117–134, 1965.
Ruzhencev, V. E. and Shevyrev, A. A.: Ammonoidei, in: Razvitie i smena morskikh organizmov na Rubezhe
Paleozoya i Mezozoya, edited by: Ruzhencev, V. E. and
Sarytcheva, T. G., Trudy Paleontologicheskogo Instituta Akademiya Nauk
SSSR, 108, 47–57, 1965.
Sahakyan, L., Baud, A., Grigoryan, A., Friesenbichler, E., and Richoz, S.
(Eds.): The Permian-Triassic transition in Southern Armenia, 5th IGCP 630
International conference and field workshop, 8-14 10, 2017, National Academy
of Sciences of the Armenia Republic, Institute of Geological Sciences,
Yerevan, Field Guide-Book 1–53, 2017.
Schobben, M., Ullmann, C. V., Leda, L., Korn, D., Struck, U., Reimold, W.
U., Ghaderi, A., Algeo, T. J., and Korte, C.: Discerning primary versus
diagenetic signals in carbonate carbon and oxygen isotope records: An
example from the Permian–Triassic boundary of Iran, Chem. Geol., 422,
94–107, 2016.
Schobben, M., van de Velde, S., Gliwa, J., Leda, L., Korn, D., Struck, U., Ullmann, C. V., Hairapetian, V., Ghaderi, A., Korte, C., Newton, R. J., Poulton, S. W., and Wignall, P. B.: Latest Permian carbonate carbon isotope variability traces heterogeneous organic carbon accumulation and authigenic carbonate formation, Clim. Past, 13, 1635–1659, https://doi.org/10.5194/cp-13-1635-2017, 2017.
Schobben, M., Van De Schootbrugge, B., and Wignall, P. B.: Interpreting the
carbon isotope record of mass extinctions, Elements: An International
Magazine of Mineralogy, Geochem. Petrol., 15, 331–337, 2019.
Şengör, A. C.: Mid-Mesozoic closure of Permo–Triassic Tethys and
its implications, Nature, 279, 590–593, 1979.
Shen, S. and Mei, S.: Lopingian (Late Permian) high-resolution conodont
biostratigraphy in Iran with comparison to South China zonation, Geol.
J., 45, 135–161, 2010.
Shevyrev, A. A.: Nadortyad Ammonoidea, in: Rasvitie i smena morskikh organizmov na rubezhe Paleozoya i Mezozoya, edited by: Ruzhencev, V. E. and Sarytcheva,
T. G.,
Trudy Paleontologicheskogo Instituta Akademiya Nauk SSSR, 108, 166–182,
1965.
Shevyrev, A. A.: Triasovye ammonoidei Yuga SSSR, Trudy Paleontologicheskogo
Instituta Akademiya Nauk SSSR, 119, 1–272, 1968.
Shimansky, V. N.: Podotryad Nautiloidea, in: Razvitie i smena morskikh organizmov na Rubezhe
Paleozoya i Mezozoya, edited by: Ruzhencev, V. E. and
Sarytcheva, T. G., Trudy Paleontologicheskogo Instituta Akademiya Nauk
SSSR, 108, 157–165, 1965.
Song, H., Wignall, P. B., Tong, J., and Yin, H.: Two pulses of extinction
during the Permian–Triassic crisis, Nat. Geosci., 6, 52–56, 2013.
Stampfli, G., Zaninetti, L., Brönimann, P., Jenny-Deshusses, C., and
Stampfli-Vuille, B.: Trias de l'Elburz oriental, Iran. Stratigraphie,
sédimentologie, micropaléontologie, Rivista Italiana di
Paleontologia, 82, 467–500, 1976.
Stampfli, G. M. and Borel, G.: A plate tectonic model for the Paleozoic and
Mesozoic constrained by dynamic plate boundaries and restored synthetic
oceanic isochrons, Earth Planet. Sc. Lett., 196, 17–33, 2002.
Stampfli, G. M. and Borel, G. D.: The TRANSMED transects in space and time:
constraints on the paleotectonic evolution of the Mediterranean domain, in:
The TRANSMED Atlas, The Mediterranean region from crust to mantle, Springer,
53–80, 2004.
Stöcklin, J.: Structural history and tectonics of Iran: a review, AAPG
Bulletin, 52, 1229–1258, 1968.
Taraz, H.: Permo-Triassic section in central Iran, AAPG Bull., 53,
688–693, 1969.
Taraz, H.: Uppermost Permian and Permo-Triassic transition beds in central
Iran, AAPG Bull., 55, 1280–1294, 1971.
Taraz, H.: Correlation of uppermost Permian in Iran, central Asia, and south
China, AAPG Bull., 57, 1117–1133, 1973.
Taraz, H.: Geology of the Surmaq Deh Bid Area, Abadeh Region, Central Iran,
Geological Survey of Iran, Reports, 37, 1–148, 1974.
Taraz, H., Golshani, F., Nakazawa, K., Sgimuzu, D., Bando, Y., Ishi, K.,
Murata, M., Okimura, Y., Sakagami, S., Nakamura, K., and Tokuoka, T.: The
Permian and the Lower Triassic systems in Abadeh region, central Iran,
Memoirs of the Faculty of Science, Kyoto University, Ser. Geol.
Mineral., 47, 61–133, 1981.
Teichert, C., Kummel, B., and Sweet, W. C.: Permian-Triassic strata,
Kuh-e-Ali Bashi, Northwestern Iran., Bulletin of the Museum of Comparative
Zoology, Harvard University, 145, 359–472, 1973.
Torsvik, T. H. and Cocks, L. R. M.: Earth geography from 400 to 250 Ma: a
palaeomagnetic, faunal and facies review, J. Geol. Soc.,
161, 555–572, 2004.
von Krafft, A. and Diener, C.: Lower Triassic cephalopoda from Spiti, Malla
Johar, and Byans, Palaeontologia Indica, 6, 1–186, 1909.
Wang, C. and Wang, Z.: Permian conodont biostratigraphy of China, Geol.
Soc. Am. Spec. Papers, 187, 227–236, 1981.
Yazdi, M. and Shirani, M.: First research on marine and nonmarine
sedimentary sequences and micropaleontologic significance across
Permian/Triassic boundary in Iran (Isfahan and Abadeh), J. China
Univ. Geosci., 13, 172–176, 2002.
Yin, H., Zhang, K., Tong, J., Yang, Z., and Wu, S.: The global stratotype
section and point (GSSP) of the Permian-Triassic boundary, Episodes, 24,
102–114, 2001.
Zakharov, Y. D.: The Permo-Triassic boundary in the southern and eastern
USSR and its intercontinental correlation, in: Stratigraphy, classification
and relations with the western Tethys, World and Regional Geology 2, edited
by: Sweet, W. C., Zunyi, Y., Dickins, J. M., and Hongfu, Y., Cambridge
University Press, Cambridge, 46–55, 1992.
Zakharov, Y. D., Abnavi, N. M., Yazdi, M., and Ghaedi, M.: New species of
Dzhulfian (Late Permian) ammonoids from the Hambast Formation of Central
Iran, Paleontol. J., 44, 614–621, 2010.
Short summary
Permian–Triassic boundary sections at Baghuk Mountain are investigated with respect to their lithological succession, biostratigraphy and chemostratigraphy. Ammonoids enable the clear separation of Wuchiapingian, Changhsingian and Dienerian assemblages. Early Triassic microbialites occur in various horizons. The carbon isotope curve shows a late Changhsingian negative excursion and the lightest values at the base of the Triassic.
Permian–Triassic boundary sections at Baghuk Mountain are investigated with respect to their...