Research article 11 Oct 2021
Research article | 11 Oct 2021
Experimental induction of resins as a tool to understand variability in ambers
Leyla J. Seyfullah et al.
Related authors
Alexander R. Schmidt, Dennis Grabow, Christina Beimforde, Vincent Perrichot, Jouko Rikkinen, Simona Saint Martin, Volker Thiel, and Leyla J. Seyfullah
Foss. Rec., 21, 213–221, https://doi.org/10.5194/fr-21-213-2018, https://doi.org/10.5194/fr-21-213-2018, 2018
Short summary
Short summary
Amber is fossilized resin and so has a terrestrial source; however, very rarely have marine microorganisms been reported, and only in a few amber pieces. We aim to understand how this rare phenomenon could be possible. Several different mechanisms were proposed, and we then tested the wind-blown idea via our experiments on resin-rich forests on the coast of New Caledonia. These forests encompass the best model for the Cretaceous ambers that contain these marine microorganisms.
B. A. Thomas and L. J. Seyfullah
Foss. Rec., 19, 1–9, https://doi.org/10.5194/fr-19-1-2016, https://doi.org/10.5194/fr-19-1-2016, 2016
Short summary
Short summary
We discovered two new species of Sigillariostrobus cones belonging to the extinct arborescent lycophytes (club mosses). These cones usually fall apart, so finding new intact cones is rare and very important for understanding the diversity of Carboniferous lycophytes. The two species are the first from Britain, although the other cones are known from Europe. One of the cone species has Laevigatisporites glabratus-type spores inside; the other has Tuberculatisporites brevispiculus-type spores.
C. Hartl, A. R. Schmidt, J. Heinrichs, L. J. Seyfullah, N. Schäfer, C. Gröhn, J. Rikkinen, and U. Kaasalainen
Foss. Rec., 18, 127–135, https://doi.org/10.5194/fr-18-127-2015, https://doi.org/10.5194/fr-18-127-2015, 2015
Florian Witzmann, Carolin Haug, Christian Klug, Johannes Müller, Torsten M. Scheyer, and Alexander R. Schmidt
Foss. Rec., 24, 443–444, https://doi.org/10.5194/fr-24-443-2021, https://doi.org/10.5194/fr-24-443-2021, 2021
Phillip E. Jardine, William D. Gosling, Barry H. Lomax, Adele C. M. Julier, and Wesley T. Fraser
J. Micropalaeontol., 38, 83–95, https://doi.org/10.5194/jm-38-83-2019, https://doi.org/10.5194/jm-38-83-2019, 2019
Short summary
Short summary
Many major food crops, including rice, wheat, maize, rye, barley, oats and millet, are domesticated species of grass. However, because grass pollen all looks highly similar, it has been challenging to track grass domestication using pollen in archaeological samples. Here, we show that we can use the chemical signature of pollen grains to classify different grass species. This approach has the potential to help unravel the spread of domestication and agriculture over the last 10 000 years.
Alexander R. Schmidt, Dennis Grabow, Christina Beimforde, Vincent Perrichot, Jouko Rikkinen, Simona Saint Martin, Volker Thiel, and Leyla J. Seyfullah
Foss. Rec., 21, 213–221, https://doi.org/10.5194/fr-21-213-2018, https://doi.org/10.5194/fr-21-213-2018, 2018
Short summary
Short summary
Amber is fossilized resin and so has a terrestrial source; however, very rarely have marine microorganisms been reported, and only in a few amber pieces. We aim to understand how this rare phenomenon could be possible. Several different mechanisms were proposed, and we then tested the wind-blown idea via our experiments on resin-rich forests on the coast of New Caledonia. These forests encompass the best model for the Cretaceous ambers that contain these marine microorganisms.
B. A. Thomas and L. J. Seyfullah
Foss. Rec., 19, 1–9, https://doi.org/10.5194/fr-19-1-2016, https://doi.org/10.5194/fr-19-1-2016, 2016
Short summary
Short summary
We discovered two new species of Sigillariostrobus cones belonging to the extinct arborescent lycophytes (club mosses). These cones usually fall apart, so finding new intact cones is rare and very important for understanding the diversity of Carboniferous lycophytes. The two species are the first from Britain, although the other cones are known from Europe. One of the cone species has Laevigatisporites glabratus-type spores inside; the other has Tuberculatisporites brevispiculus-type spores.
C. Hartl, A. R. Schmidt, J. Heinrichs, L. J. Seyfullah, N. Schäfer, C. Gröhn, J. Rikkinen, and U. Kaasalainen
Foss. Rec., 18, 127–135, https://doi.org/10.5194/fr-18-127-2015, https://doi.org/10.5194/fr-18-127-2015, 2015
Related subject area
Biogeochemistry
Neutron imaging investigation of fossil woods: non-destructive characterization of microstructure and detection of in situ changes as occurring in museum cabinets
Chemo- and biostratigraphy of the Gaojiashan section (northern Yangtze platform, South China): a new Pc-C boundary section
Giliane P. Odin, Véronique Rouchon, Frédéric Ott, Natalie Malikova, Pierre Levitz, and Laurent J. Michot
Foss. Rec., 20, 95–103, https://doi.org/10.5194/fr-20-95-2017, https://doi.org/10.5194/fr-20-95-2017, 2017
Short summary
Short summary
This paper discusses the applicability of neutron imaging techniques for probing the internal microstructure of pyritized fossil woods upon wetting and drying, two phenomena occurring in museum cabinets and endangering the specimens. We tracked the water diffusion through samples in situ and obtained information on wood pore size, network and internal structure. The differences help to understand the distinct macroscopic behaviors and determine the consequences of moisture variations in museums.
A. Gamper, U. Struck, F. Ohnemueller, C. Heubeck, and S. Hohl
Foss. Rec., 18, 105–117, https://doi.org/10.5194/fr-18-105-2015, https://doi.org/10.5194/fr-18-105-2015, 2015
Cited articles
Aquilina, L., Girard, V., Hénin, O., Bouhnik-Le Coz, M., Vilbert, D.,
Perrichot, V., and Néraudeau, D.: Amber inorganic geochemistry: new
insight into the environmental processes in a Cretaceous forest of France,
Palaeogeogr. Palaeocl., 369, 220–227, https://doi.org/10.1016/j.palaeo.2012.10.023,
2013.
Beltran, V., Salvadó, N., Butí, S., and Pradell, T.: Ageing of resin
from Pinus species assessed by infrared spectroscopy, Anal. Bioanal. Chem., 408,
4073–4082, https://doi.org/10.1007/s00216-016-9496-x, 2016.
Dal Corso, J., Roghi, G., Ragazzi, E., Angelini, I., Giaretta, A., Soriano,
C., Delclòs, X., and Jenkyns, H. C.: Physico-chemical analysis of Albian
(Lower Cretaceous) amber from San Just (Spain): implications for
palaeoenvironmental and palaeoecological studies, Geol. Acta, 11, 359–370,
https://doi.org/10.1344/105.000001871, 2013.
Dal Corso, J., Schmidt, A. R., Seyfullah, L. J., Preto, N., Ragazzi, E.,
Jenkyns, H. C., Delclòs, X., Néraudeau, D., and Roghi, G.:
Evaluating the use of amber in palaeoatmospheric reconstructions: the
carbon-isotope variability of modern and Cretaceous conifer resins, Geochim.
Cosmochim. Ac. 199, 351–369, https://doi.org/10.1016/j.gca.2016.11.025, 2017.
Dutta, S., Mehrotra, R. C., Paul, S., Tiwari, R. P., Bhattacharya, S.,
Srivastava, G., Ralte, V. Z., and Zoramthara, C.: Remarkable preservation of
terpenoids and record of volatile signalling in plant-animal interactions
from Miocene amber, Sci. Rep.-UK, 7, 10940, https://doi.org/10.1038/s41598-017-09385-w,
2017.
Gaigalas, A. and Halas, S.: Stable isotopes (H, C, S) and the origin of
Baltic amber, Geochronometria, 33, 33–36, https://doi.org/10.2478/v10003-009-0001-9,
2009.
Greenfield, A., McPherson, H., Auld, T., Delaney, S., Offord, C., van der
Merwe, M., Yap, S. and Rossetto. M.: Whole-chloroplast analysis as an
approach for fine-tuning the preservation of a highly charismatic but
critically endangered species, Wollemia nobilis (Araucariaceae), Aust. J. Bot., 64, 654–658,
https://doi.org/10.1071/BT16105, 2016.
Grimaldi, D.: Amber: Window to the Past, Harry N. Abrams, Incorporated, New
York, 1996.
Grimaldi, D., Bonwich, E., Delannoy, M., and Doberstein, S.: Electron
microscopic studies of mummified tissues in amber fossils, Am. Mus. Novit.,
3097, 1–31, 1994.
Grimaldi, D., Shedrinsky, A., and Wampler, T. P.: A remarkable deposit of
fossiliferous amber from the Upper Cretaceous (Turonian) of New Jersey, in:
Studies on Fossils in Amber, with Particular Reference to the Cretaceous of
New Jersey, edited by: Grimaldi, D., Backhuys Publishing, Leiden, 1–76,
2000.
Henwood, A.: Exceptional preservation of dipteran flight muscle and the
taphonomy of insects in amber, PALAIOS, 7, 203–12, 1992.
Lambert, J. B., Johnson, S. C., Poinar Jr., G. O., and Frye, J. S.: Recent
and fossil resins from New Zealand and Australia, Geoarchaeology, 8,
141–155, 1993.
Langenheim, J. H.: Plant resins, Am. Sci., 78, 16–24, 1990.
Liland, K. H., Almøy, T., and Mevik, B.-H.: Optimal Choice of Baseline
Correction for Multivariate Calibration of Spectra, Appl. Spectr., 64,
1007–1016, 2010.
Lyons, P. C., Masterlerz, M., and Orem, W. H.: Organic geochemistry of resins
from modern Agathis australis and Eocene resins from New Zealand: diagenetic and taxonomic
implications, Int. J. Coal Geol., 80, 51–62, https://doi.org/10.1016/j.coal.2009.07.015,
2009.
McCoy, V. E., Soriano, C., and Gabbott, S. G.: A review of preservational
variation of fossil inclusions in amber of different chemical groups, Earth
Env. Sci. T. R. So., 107, 203–211, https://doi.org/10.1017/S1755691017000391, 2017a.
McCoy, V. E., Boom, A., Solórzano Kraemer, M. M., and Gabbott, S. E.: The
chemistry of American and African amber, copal, and resin from the genus
Hymenaea, Org. Geochem., 113, 43–54, https://doi.org/10.1016/j.orggeochem.2017.08.005, 2017b.
McCoy, V. E., Gabbott, S. E., Penkman, K., Collins, M. J., Presslee, S.,
Holt, J., Grossman, H., Wang, B., Solórzano Kraemer, M. M., Delclòs,
X., and Peñalver, E.: Ancient amino acids from fossil feathers in amber,
Sci. Rep.-UK, 9, 6420, https://doi.org/10.1038/s41598-019-42938-9, 2019.
McKellar, R. C., Wolfe, A. P., Muehlenbachs, K., Tappert, R., Engel, M. S.,
Cheng, T., and Sánchez-Azofeifa, G. A.: Insect outbreaks produce
distinctive carbon isotope signatures in defensive resins and fossiliferous
ambers, P. R. Soc. B., 278, 3219–3224, https://doi.org/10.1098/rspb.2011.0276, 2011.
Najarro, M., Penãlver, E., Pérez-de la Fuente, R., Ortega-Blanco,
J., Menor-Salván, C., Barrón, E., Soriano, C., Rosales, I.,
López del Valle, R., Velasco, F., Tornos, F., Daviero-Gomez, V., Gomez,
B., and Delclòs, X.: Review of the El Soplao amber outcrop, Early
Cretaceous of Cantabria, Spain, Acta Geol. Sin.-Engl., 84, 959–976, 2010.
Neuwirth, E.: RColorBrewer: ColorBrewer Palettes, R package version 1.1-2, available at:
https://CRAN.R-project.org/package=RColorBrewer (last access: 1 May 2021),
2014.
Nissenbaum, A. and Yaker, D.: Stable isotope composition of amber, in:
Amber, resinite and fossil resins, edited by: Anderson, K. B. and Crelling,
J. C., ACS Symposium Series, 617, 32–42, American Chemical Society, Washington DC, 1995.
Nissenbaum, A., Yakir, D., and Langenheim, J. H.: Bulk carbon, oxygen, and
hydrogen stable isotope composition of recent resins from amber producing
Hymenaea, Naturwissenschaften, 92, 26–29, 2005.
Peakall, R., Ebert, D., Scott, L. J., Meagher, P. F., and Offord, C. A.:
Comparative genetic study confirms exceptionally low genetic variation in
the ancient and endangered relictual conifer, Wollemia nobilis (Araucariaceae), Mol. Ecol.,
12, 2331–2343, https://doi.org/10.1046/j.1365-294x.2003.01926.x, 2003.
Pereira, R., de Souza Carvalho, I., Simoneit, B. R. T., and de Almeida
Azevedo, D.: Molecular composition and chemisystematic aspects of Cretaceous
amber from Amazonas, Araripe and Recôncavo basins, Brazil, Org.
Geochem., 40, 863–875, https://doi.org/10.1016/j.orggeochem.2009.05.002, 2009.
Ragazzi, E. and Schmidt, A. R.: Amber, in: Encyclopedia of Geobiology,
edited by: Reitner, J. and Thiel, V., Springer, Dordrecht, 24–36, 2011.
R Core Team: R: A language and environment for statistical computing. R
Foundation for Statistical Computing, Vienna, Austria, available
at: https://www.R-project.org/, last access: 1 May 2021.
Rust, J., Singh, H., Rana, R. S., McCanna, T., Singh, L., Anderson, K.,
Sarkare, N., Nascimbene, P. C., Stebner, F., Thomas, J. C., Solórzano
Kraemer, M., Williams, C. J., Engel, M. S., Sahni, A., and Grimaldi, D.:
Biogeographic and evolutionary implications of a diverse paleobiota in amber
from the early Eocene of India, P. Natl. Acad. Sci. USA, 107, 18360–18365,
https://doi.org/10.1073/pnas.1007407107, 2010.
Schmidt, A. R., Kaulfuss, U., Bannister, J. M., Baranov, V., Beimforde, C.,
Bleile, N., Borkent, A., Busch, A., Conran, J. G., Engel, M. S., Harvey, M.,
Kennedy, E. M., Kerr, P., Kettunen, E., Kiecksee, A. P., Lengeling, F.,
Lindqvist, J. K., Maraun, M., Mildenhall, D. C., Perrichot, V., Rikkinen,
J., Sadowski, E.-M., Seyfullah, L. J., Stebner, F., Szwedo, J., Ulbrich, P.,
and Lee, D. E.: Amber inclusions from New Zealand, Gondwana Res., 56,
135–146, https://doi.org/10.1016/j.gr.2017.12.003, 2018.
Seyfullah, L. J., Sadowski, E. M., and Schmidt, A. R.: Species-level
determination of closely related araucarian resins using FTIR spectroscopy
and its implications for the provenance of New Zealand amber, PeerJ, 3,
e1067, https://doi.org/10.7717/peerj.1067, 2015.
Seyfullah, L. J., Beimforde, C., Dal Corso, J., Perrichot, V., Rikkinen, J.,
and Schmidt, A. R.: Production and preservation of resins – past and
present, Biol. Rev., 93, 1684–1714, https://doi.org/10.1111/brv.12414, 2018a.
Seyfullah, L. J., Roghi, G., Dal Corso, J., and Schmidt, A. R.: The Carnian
Pluvial Episode and the first global appearance of amber, J. Geol. Soc.
Lond., 175, 986–988, https://doi.org/10.1144/jgs2017-143, 2018b.
Steward, G. A. and Beveridge, A. E.: A review of New Zealand kauri (Agathis australis (D.Don)
Lindl.): its ecology, history, growth and potential for management for
timber, NZ, J. Forest. Sci., 40, 33–59, 2010.
Stout, S. A.: Resin-derived hydrocarbons in fresh and fossil Dammar resins
and Miocene rocks and oils in the Mahakam delta, Indonesia, in: Amber,
Resinite and Fossil Resins, edited by: Anderson, K. B. and Crelling, J. C.,
American Chemical Society, Washington D.C., 43–75, 1995.
Tappert, R., Wolfe, A. P., McKellar, R. C., Tappert, C. M., and Muehlenbachs,
K.: Characterizing modern and fossil conifer exudates using micro-FTIR
spectroscopy, Int. J. Plant Sci., 172, 120–138, https://doi.org/10.1086/657277, 2011.
Thomas, D. B., Nascimbene, P. C., Dove, C. J., Grimaldi, D. A., and James, H.
F.: Seeking carotenoid pigments in amber-preserved fossil feathers, Sci.
Rep.-UK, 4, 1–6, https://doi.org/10.1038/srep05226, 2014.
Varmuza, K. and Filzmoser, P.: Introduction to multivariate statistical
analysis in chemometrics, CRC Press (Taylor & Francis) Boca Raton, FL,
USA, 2009.
Wolfe, A. P., McKellar, R. C., Tappert, R., Sodhi, R. N. S., and
Muehlenbachs, K.: Bitterfeld amber is not Baltic amber: Three geochemical
tests and further constraints on the botanical affinities of succinite, Rev.
Palaeobot. Palyno., 225, 21–32, https://doi.org/10.1016/j.revpalbo.2015.11.002, 2016.
Yamamoto, S., Otto, A., Krumbiegel, G., and Simoneit, B. R. T.: The natural
product biomarkers in succinite, glessite and stantienite ambers from
Bitterfeld, Germany, Rev. Palaeobot. Palyno., 140, 27–49,
https://doi.org/10.1016/j.revpalbo.2006.02.002, 2006.
Short summary
Currently, little is known about the natural chemical variability of resins and ambers. To understand how much resin variability occurs naturally we ran experiments on plants and then investigated the resultant resins with FTIR-ATR spectroscopy. We detected that resin viscosity and genetic variation are important factors in determining the amount of variation in resin chemistry. This natural variability needs to be taken into account when testing resin and amber chemistries in the future.
Currently, little is known about the natural chemical variability of resins and ambers. To...