Gaigalas, A. and Halas, S.: Stable isotopes (H, C, S) and the origin of
Baltic amber, Geochronometria, 33, 33–36, https://doi.org/10.2478/v10003-009-0001-9,
2009.
Greenfield, A., McPherson, H., Auld, T., Delaney, S., Offord, C., van der
Merwe, M., Yap, S. and Rossetto. M.: Whole-chloroplast analysis as an
approach for fine-tuning the preservation of a highly charismatic but
critically endangered species,
Wollemia nobilis (Araucariaceae), Aust. J. Bot., 64, 654–658,
https://doi.org/10.1071/BT16105, 2016.
Grimaldi, D.: Amber: Window to the Past, Harry N. Abrams, Incorporated, New
York, 1996.
Grimaldi, D., Bonwich, E., Delannoy, M., and Doberstein, S.: Electron
microscopic studies of mummified tissues in amber fossils, Am. Mus. Novit.,
3097, 1–31, 1994.
Grimaldi, D., Shedrinsky, A., and Wampler, T. P.: A remarkable deposit of
fossiliferous amber from the Upper Cretaceous (Turonian) of New Jersey, in:
Studies on Fossils in Amber, with Particular Reference to the Cretaceous of
New Jersey, edited by: Grimaldi, D., Backhuys Publishing, Leiden, 1–76,
2000.
Henwood, A.: Exceptional preservation of dipteran flight muscle and the
taphonomy of insects in amber, PALAIOS, 7, 203–12, 1992.
Lambert, J. B., Johnson, S. C., Poinar Jr., G. O., and Frye, J. S.: Recent
and fossil resins from New Zealand and Australia, Geoarchaeology, 8,
141–155, 1993.
Lyons, P. C., Masterlerz, M., and Orem, W. H.: Organic geochemistry of resins
from modern
Agathis australis and Eocene resins from New Zealand: diagenetic and taxonomic
implications, Int. J. Coal Geol., 80, 51–62, https://doi.org/10.1016/j.coal.2009.07.015,
2009.
McCoy, V. E., Soriano, C., and Gabbott, S. G.: A review of preservational
variation of fossil inclusions in amber of different chemical groups, Earth
Env. Sci. T. R. So., 107, 203–211, https://doi.org/10.1017/S1755691017000391, 2017a.
McCoy, V. E., Boom, A., Solórzano Kraemer, M. M., and Gabbott, S. E.: The
chemistry of American and African amber, copal, and resin from the genus
Hymenaea, Org. Geochem., 113, 43–54, https://doi.org/10.1016/j.orggeochem.2017.08.005, 2017b.
McCoy, V. E., Gabbott, S. E., Penkman, K., Collins, M. J., Presslee, S.,
Holt, J., Grossman, H., Wang, B., Solórzano Kraemer, M. M., Delclòs,
X., and Peñalver, E.: Ancient amino acids from fossil feathers in amber,
Sci. Rep.-UK, 9, 6420, https://doi.org/10.1038/s41598-019-42938-9, 2019.
McKellar, R. C., Wolfe, A. P., Muehlenbachs, K., Tappert, R., Engel, M. S.,
Cheng, T., and Sánchez-Azofeifa, G. A.: Insect outbreaks produce
distinctive carbon isotope signatures in defensive resins and fossiliferous
ambers, P. R. Soc. B., 278, 3219–3224, https://doi.org/10.1098/rspb.2011.0276, 2011.
Najarro, M., Penãlver, E., Pérez-de la Fuente, R., Ortega-Blanco,
J., Menor-Salván, C., Barrón, E., Soriano, C., Rosales, I.,
López del Valle, R., Velasco, F., Tornos, F., Daviero-Gomez, V., Gomez,
B., and Delclòs, X.: Review of the El Soplao amber outcrop, Early
Cretaceous of Cantabria, Spain, Acta Geol. Sin.-Engl., 84, 959–976, 2010.
Neuwirth, E.: RColorBrewer: ColorBrewer Palettes, R package version 1.1-2, available at:
https://CRAN.R-project.org/package=RColorBrewer (last access: 1 May 2021),
2014.
Nissenbaum, A. and Yaker, D.: Stable isotope composition of amber, in:
Amber, resinite and fossil resins, edited by: Anderson, K. B. and Crelling,
J. C., ACS Symposium Series, 617, 32–42, American Chemical Society, Washington DC, 1995.
Nissenbaum, A., Yakir, D., and Langenheim, J. H.: Bulk carbon, oxygen, and
hydrogen stable isotope composition of recent resins from amber producing
Hymenaea, Naturwissenschaften, 92, 26–29, 2005.
Otto, A., Simoneit, B. R. T., Wilde, V., Kunzmann, L., and Püttmann, W.:
Terpenoid composition of three fossil resin from Cretaceous and Tertiary
conifers, Rev. Palaeobot. Palyno., 120, 203–215,
https://doi.org/10.1016/S0034-6667(02)00072-6, 2002.
Peakall, R., Ebert, D., Scott, L. J., Meagher, P. F., and Offord, C. A.:
Comparative genetic study confirms exceptionally low genetic variation in
the ancient and endangered relictual conifer,
Wollemia nobilis (Araucariaceae), Mol. Ecol.,
12, 2331–2343, https://doi.org/10.1046/j.1365-294x.2003.01926.x, 2003.
Pereira, R., de Souza Carvalho, I., Simoneit, B. R. T., and de Almeida
Azevedo, D.: Molecular composition and chemisystematic aspects of Cretaceous
amber from Amazonas, Araripe and Recôncavo basins, Brazil, Org.
Geochem., 40, 863–875, https://doi.org/10.1016/j.orggeochem.2009.05.002, 2009.
Ragazzi, E. and Schmidt, A. R.: Amber, in: Encyclopedia of Geobiology,
edited by: Reitner, J. and Thiel, V., Springer, Dordrecht, 24–36, 2011.
R Core Team: R: A language and environment for statistical computing. R
Foundation for Statistical Computing, Vienna, Austria, available
at:
https://www.R-project.org/, last access: 1 May 2021.
Rust, J., Singh, H., Rana, R. S., McCanna, T., Singh, L., Anderson, K.,
Sarkare, N., Nascimbene, P. C., Stebner, F., Thomas, J. C., Solórzano
Kraemer, M., Williams, C. J., Engel, M. S., Sahni, A., and Grimaldi, D.:
Biogeographic and evolutionary implications of a diverse paleobiota in amber
from the early Eocene of India, P. Natl. Acad. Sci. USA, 107, 18360–18365,
https://doi.org/10.1073/pnas.1007407107, 2010.
Seyfullah, L. J., Sadowski, E. M., and Schmidt, A. R.: Species-level
determination of closely related araucarian resins using FTIR spectroscopy
and its implications for the provenance of New Zealand amber, PeerJ, 3,
e1067, https://doi.org/10.7717/peerj.1067, 2015.
Seyfullah, L. J., Beimforde, C., Dal Corso, J., Perrichot, V., Rikkinen, J.,
and Schmidt, A. R.: Production and preservation of resins – past and
present, Biol. Rev., 93, 1684–1714, https://doi.org/10.1111/brv.12414, 2018a.
Seyfullah, L. J., Roghi, G., Dal Corso, J., and Schmidt, A. R.: The Carnian
Pluvial Episode and the first globa
l appearance of amber, J. Geol. Soc.
Lond., 175, 986–988, https://doi.org/10.1144/jgs2017-143, 2018b.
Steward, G. A. and Beveridge, A. E.: A review of New Zealand kauri (
Agathis australis (D.Don)
Lindl.): its ecology, history, growth and potential for management for
timber, NZ, J. Forest. Sci., 40, 33–59, 2010.
Stout, S. A.: Resin-derived hydrocarbons in fresh and fossil Dammar resins
and Miocene rocks and oils in the Mahakam delta, Indonesia, in: Amber,
Resinite and Fossil Resins, edited by: Anderson, K. B. and Crelling, J. C.,
American Chemical Society, Washington D.C., 43–75, 1995.
Tappert, R., Wolfe, A. P., McKellar, R. C., Tappert, C. M., and Muehlenbachs,
K.: Characterizing modern and fossil conifer exudates using micro-FTIR
spectroscopy, Int. J. Plant Sci., 172, 120–138, https://doi.org/10.1086/657277, 2011.
Thomas, D. B., Nascimbene, P. C., Dove, C. J., Grimaldi, D. A., and James, H.
F.: Seeking carotenoid pigments in amber-preserved fossil feathers, Sci.
Rep.-UK, 4, 1–6, https://doi.org/10.1038/srep05226, 2014.
Varmuza, K. and Filzmoser, P.: Introduction to multivariate statistical
analysis in chemometrics, CRC Press (Taylor & Francis) Boca Raton, FL,
USA, 2009.
Wolfe, A. P., McKellar, R. C., Tappert, R., Sodhi, R. N. S., and
Muehlenbachs, K.: Bitterfeld amber is not Baltic amber: Three geochemical
tests and further constraints on the botanical affinities of succinite, Rev.
Palaeobot. Palyno., 225, 21–32, https://doi.org/10.1016/j.revpalbo.2015.11.002, 2016.
Yamamoto, S., Otto, A., Krumbiegel, G., and Simoneit, B. R. T.: The natural
product biomarkers in succinite, glessite and stantienite ambers from
Bitterfeld, Germany, Rev. Palaeobot. Palyno., 140, 27–49,
https://doi.org/10.1016/j.revpalbo.2006.02.002, 2006.