Articles | Volume 23, issue 1
https://doi.org/10.5194/fr-23-33-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/fr-23-33-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Aras Valley (northwest Iran): high-resolution stratigraphy of a continuous central Tethyan Permian–Triassic boundary section
Jana Gliwa
CORRESPONDING AUTHOR
Museum für Naturkunde Berlin, Leibniz Institute for Evolution and
Biodiversity Science, Invalidenstraße 43, 10115 Berlin, Germany
Abbas Ghaderi
Department of Geology, Faculty of Science, Ferdowsi University of
Mashhad, P.O. Box 9177948974, Mashhad, I. R. Iran
Lucyna Leda
Museum für Naturkunde Berlin, Leibniz Institute for Evolution and
Biodiversity Science, Invalidenstraße 43, 10115 Berlin, Germany
Martin Schobben
Department of Earth Sciences, Utrecht University, Princetonlaan 8A,
Utrecht, the Netherlands
Sara Tomás
Institute of Earth & Environmental Sciences, University of Potsdam,
Karl-Liebknecht-Straße 24–25, 14476 Potsdam, Germany
William J. Foster
Museum für Naturkunde Berlin, Leibniz Institute for Evolution and
Biodiversity Science, Invalidenstraße 43, 10115 Berlin, Germany
School of Earth Sciences, Institute of Geosciences, University College Dublin, Belfield, Dublin
4, Ireland
Marie-Béatrice Forel
CR2P, Muséum national d'Histoire naturelle-Sorbonne
Université-CNRS, 8 rue Buffon (CP38), 75005, Paris, France
Nahideh Ghanizadeh Tabrizi
Department of Geology, Faculty of Science, Ferdowsi University of
Mashhad, P.O. Box 9177948974, Mashhad, I. R. Iran
Stephen E. Grasby
Geological Survey of Canada – Calgary, 3303 33rd St. N.W., Calgary,
Alberta, T2L 2A7, Canada
Ulrich Struck
Museum für Naturkunde Berlin, Leibniz Institute for Evolution and
Biodiversity Science, Invalidenstraße 43, 10115 Berlin, Germany
Ali Reza Ashouri
Department of Geology, Faculty of Science, Ferdowsi University of
Mashhad, P.O. Box 9177948974, Mashhad, I. R. Iran
Dieter Korn
Museum für Naturkunde Berlin, Leibniz Institute for Evolution and
Biodiversity Science, Invalidenstraße 43, 10115 Berlin, Germany
Related authors
No articles found.
Aleksandra Smyrak-Sikora, Peter Betlem, Victoria S. Engelschiøn, William J. Foster, Sten-Andreas Grundvåg, Mads E. Jelby, Morgan T. Jones, Grace E. Shephard, Kasia K. Śliwińska, Madeleine L Vickers, Valentin Zuchuat, Lars Eivind Augland, Jan Inge Faleide, Jennifer M. Galloway, William Helland-Hansen, Maria A. Jensen, Erik P. Johannessen, Maayke Koevoets, Denise Kulhanek, Gareth S. Lord, Tereza Mosociova, Snorre Olaussen, Sverre Planke, Gregory D. Price, Lars Stemmerik, and Kim Senger
EGUsphere, https://doi.org/10.5194/egusphere-2024-3912, https://doi.org/10.5194/egusphere-2024-3912, 2025
This preprint is open for discussion and under review for Climate of the Past (CP).
Short summary
Short summary
In this review article we present Svalbard’s unique geological archive, revealing its climate history over the last 540 million years. We uncover how this Arctic region recorded key global events, including end Permian mass extinction, and climate crises like the Paleocene-Eocene Thermal Maximum. The overall climate trend recorded in sedimentary successions in Svalbard is discussed in context of global climate fluctuations and continuous drift of Svalbard from near equator to Arctic latitudes.
Nariman Mahmoodi, Ulrich Struck, Michael Schneider, and Christoph Merz
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2024-214, https://doi.org/10.5194/hess-2024-214, 2024
Preprint under review for HESS
Short summary
Short summary
Understanding water balance in lakes is complex. We studied Lake Gross Glienicke in Germany, using an innovative method that combines isotope measurements and a hydrological model to improve estimates of water inflow and evaporation. Our findings show a high correlation between the two approaches, leading to better predictions of lake water dynamics. This research offers a reliable way to evaluate the model outputs.
Gabrielle Rodrigues de Faria, David Lazarus, Johan Renaudie, Jessica Stammeier, Volkan Özen, and Ulrich Struck
Clim. Past, 20, 1327–1348, https://doi.org/10.5194/cp-20-1327-2024, https://doi.org/10.5194/cp-20-1327-2024, 2024
Short summary
Short summary
Export productivity is part of the global carbon cycle, influencing the climate system via biological pump. About 34 million years ago, the Earth's climate experienced a climate transition from a greenhouse state to an icehouse state with the onset of ice sheets in Antarctica. Our study shows important productivity events in the Southern Ocean preceding this climatic shift. Our findings strongly indicate that the biological pump potentially played an important role in that past climate change.
Richard M. Besen, Kathleen Schindler, Andrew S. Gale, and Ulrich Struck
J. Micropalaeontol., 42, 117–146, https://doi.org/10.5194/jm-42-117-2023, https://doi.org/10.5194/jm-42-117-2023, 2023
Short summary
Short summary
Turonian–Coniacian agglutinated foraminiferal assemblages from calcareous deposits from the temperate European shelf realm were studied. Acmes of agglutinated foraminifera correlate between different sections and can be used for paleoenvironmental analysis expressing inter-regional changes. Agglutinated foraminiferal morphogroups display a gradual shift from Turonian oligotrophic environments towards more mesotrophic conditions in the latest Turonian and Coniacian.
Gerhard Franz, Vladimir Khomenko, Peter Lyckberg, Vsevolod Chournousenko, Ulrich Struck, Ulrich Gernert, and Jörg Nissen
Biogeosciences, 20, 1901–1924, https://doi.org/10.5194/bg-20-1901-2023, https://doi.org/10.5194/bg-20-1901-2023, 2023
Short summary
Short summary
This research describes the occurrence of Precambrian fossils, with exceptionally well preserved morphology in 3D. These microfossils reach a size of millimeters (possibly up to centimeters) and thus indicate the presence of multicellular eukaryotes. Many of them are filamentous, but other types were also found. These fossils lived in a depth of several hundred meters and thus provide good evidence of a continental the deep biosphere, from a time generally considered as the
boring billion.
Richard M. Besen, Ulrich Struck, and Ekbert Seibertz
Foss. Rec., 24, 395–441, https://doi.org/10.5194/fr-24-395-2021, https://doi.org/10.5194/fr-24-395-2021, 2021
Short summary
Short summary
The agglutinated foraminiferal fauna in carbonate rocks from the mid-Cretaceous of Lower Saxony is documented and applied to reconstruct former paleoenvironmental conditions. Especially, sea level fluctuations are possible to reconstruct from changes in the foraminiferal record. Differences of the foraminiferal assemblages in different locations, closer or further away from the former coast, are discussed. Described bio-events of the time interval are linked to foraminiferal bio-events.
Dieter Korn, Lucyna Leda, Franziska Heuer, Hemen Moradi Salimi, Elham Farshid, Amir Akbari, Martin Schobben, Abbas Ghaderi, Ulrich Struck, Jana Gliwa, David Ware, and Vachik Hairapetian
Foss. Rec., 24, 171–192, https://doi.org/10.5194/fr-24-171-2021, https://doi.org/10.5194/fr-24-171-2021, 2021
Short summary
Short summary
Permian–Triassic boundary sections at Baghuk Mountain are investigated with respect to their lithological succession, biostratigraphy and chemostratigraphy. Ammonoids enable the clear separation of Wuchiapingian, Changhsingian and Dienerian assemblages. Early Triassic microbialites occur in various horizons. The carbon isotope curve shows a late Changhsingian negative excursion and the lightest values at the base of the Triassic.
Martin Schobben, Sebastiaan van de Velde, Jana Gliwa, Lucyna Leda, Dieter Korn, Ulrich Struck, Clemens Vinzenz Ullmann, Vachik Hairapetian, Abbas Ghaderi, Christoph Korte, Robert J. Newton, Simon W. Poulton, and Paul B. Wignall
Clim. Past, 13, 1635–1659, https://doi.org/10.5194/cp-13-1635-2017, https://doi.org/10.5194/cp-13-1635-2017, 2017
Short summary
Short summary
Stratigraphic trends in the carbon isotope composition of calcium carbonate rock can be used as a stratigraphic tool. An important assumption when using these isotope chemical records is that they record a globally universal signal of marine water chemistry. We show that carbon isotope scatter on a confined centimetre stratigraphic scale appears to represent a signal of microbial activity. However, long-term carbon isotope trends are still compatible with a primary isotope imprint.
Related subject area
Earth System Science and Global Change
Baghuk Mountain (Central Iran): high-resolution stratigraphy of a continuous Central Tethyan Permian–Triassic boundary section
Rostrum size differences between Toarcian belemnite battlefields
Facies, origin, and palaeontological inventory of an Early Carboniferous neptunian dyke in the Devonian reef limestone near Rösenbeck (Brilon Anticline, Rhenish Mountains)
Dieter Korn, Lucyna Leda, Franziska Heuer, Hemen Moradi Salimi, Elham Farshid, Amir Akbari, Martin Schobben, Abbas Ghaderi, Ulrich Struck, Jana Gliwa, David Ware, and Vachik Hairapetian
Foss. Rec., 24, 171–192, https://doi.org/10.5194/fr-24-171-2021, https://doi.org/10.5194/fr-24-171-2021, 2021
Short summary
Short summary
Permian–Triassic boundary sections at Baghuk Mountain are investigated with respect to their lithological succession, biostratigraphy and chemostratigraphy. Ammonoids enable the clear separation of Wuchiapingian, Changhsingian and Dienerian assemblages. Early Triassic microbialites occur in various horizons. The carbon isotope curve shows a late Changhsingian negative excursion and the lightest values at the base of the Triassic.
Patrícia Rita, Kenneth De Baets, and Martina Schlott
Foss. Rec., 21, 171–182, https://doi.org/10.5194/fr-21-171-2018, https://doi.org/10.5194/fr-21-171-2018, 2018
Short summary
Short summary
With the support of CT data, a morphometric analysis was performed with the aim of investigating the rostrum size differences between two Toarcian belemnite accumulations. A decrease in size from the Early Toarcian to the Middle Toarcian is recognized. It is also demonstrated that diameter-based measurements or maximum preserved length are not reliable proxies for rostrum size, and therefore apical length or three-dimensional approximations are more advisable.
F. Heuer, D. Korn, Z. Belka, and V. Hairapetian
Foss. Rec., 18, 57–72, https://doi.org/10.5194/fr-18-57-2015, https://doi.org/10.5194/fr-18-57-2015, 2015
Short summary
Short summary
The Devonian reef limestone complex of Rösenbeck near Brilon (Rhenish Mountains) shows numerous neptunian dykes and other hollows which have been filled with Carboniferous siliciclastic as well as fossil-rich carbonate sediments with ammonoids, conodonts, and chondrichthyan fish. These carbonates represent erratic blocks of sediments which were deposited in elevated areas but subsequently eroded and transported as erratic blocks into the karstic cavities.
Cited articles
Abich, H.: Geologische Forschungen in den kaukasischen Ländern, Theil I.
Eine Bergkalkfauna aus der Araxesenge bei Djoulfa in Armenien, Hölder,
Wien, 1–128 pp., 1878.
Altiner, D., Baud, A., Guex, J., and Stampfli, G.: La limite Permien-Trias
dans quelques localités du Moyen-Orient: Recherches stratigraphiques et
micropaléontologique, Rivista Italiana di Paleontologia e Stratigrafia,
85, 683–714, 1980.
Arakelyan, R. A., Grunt, T. A., and Shevyrev, A. A.: Kratkiy
stratigraficheskiy ocherk, in:
Rasvitie i smena morskikh organizmov na rubezhe Paleozoya i Mezozoya, edited by: Ruzhencev, V. E. and Sarytcheva, T. G., Trudy
Paleontologicheskogo Instituta Akademiya Nauk SSSR, 108, 20–25, 1965.
BadriKolalo, N., Hamdi, B., Vaziri, S. H., and Aghanabati, S. A.:
Biostratigraphic Correlation of Elikah Formation in Zal Section
(Northwestern Iran) with Ruteh and Type Sections in Alborz Mountains Based
on Conodonts, Iranian Journal of Earth Sciences, 7, 78–88, 2015.
Bagherpour, B., Bucher, H., Baud, A., Brosse, M., Vennemann, T., Martini,
R., and Guodun, K.: Onset, development, and cessation of basal Early
Triassic microbialites (BETM) in the Nanpanjiang pull-apart Basin, South
China Block, Gondwana Res., 44, 178–204, 2017.
Baresel, B., Bucher, H., Brosse, M., Cordey, F., Guodun, K., and Schaltegger, U.: Precise age for the Permian–Triassic boundary in South China from high-precision U-Pb geochronology and Bayesian age–depth modeling, Solid Earth, 8, 361–378, https://doi.org/10.5194/se-8-361-2017, 2017.
Baud, A., Magaritz, M., and Holser, W. T.: Permian-Triassic of the Tethys:
Carbon isotope studies, Geol. Rundsch., 78, 649–677, 1989.
Baud, A., Cirilli, S., and Marcoux, J.: Biotic response to mass extinction:
the lowermost Triassic microbialites, Facies, 36, 238–242, 1997.
Baud, A., Atudorei, V., and Richoz, S.: Sea-floor carbonate fans and
calcimicrobial mound in the lower Triassic red limestone of the Alwa
Formation, Baid Exotic, Eastern Oman Mountains, 24th IAS meeting of
Sedimentology, 2005a.
Baud, A., Richoz, S., and Marcoux, J.: Calcimicrobial cap rocks from the
basal Triassic units: western Taurus occurrences (SW Turkey), Comptes Rendus
Palevol, 4, 569–582, 2005b.
Belousova, Z. D.: Podklass Ostracoda, in: Rasvitie i smena morskikh organizmov na rubezhe Paleozoya i Mezozoya, edited by: Ruzhencev, V. E. and Sarytcheva,
T. G.,
Trudy Paleontologicheskogo Instituta Akademiya Nauk SSSR, 108, 254–265,
1965.
Benton, M. J. and Twitchett, R. J.: How to kill (almost) all life: the
end-Permian extinction event, Trends Ecol. Evol., 18, 358–365,
2003.
Berner, R. A.: Examination of hypotheses for the Permo–Triassic boundary
extinction by carbon cycle modeling, P. Natl. Acad.
Sci. USA, 99, 4172–4177, 2002.
Black, B. A., Neely, R. R., Lamarque, J.-F., Elkins-Tanton, L. T., Kiehl, J.
T., Shields, C. A., Mills, M. J., and Bardeen, C.: Systemic swings in
end-Permian climate from Siberian Traps carbon and sulfur outgassing, Nat.
Geosci., 11, 949–954, 2018.
Brand, U., Posenato, R., Came, R., Affek, H., Angiolini, L., Azmy, K., and
Farabegoli, E.: The end-Permian mass extinction: A rapid volcanic CO2 and
CH4-climatic catastrophe, Chem. Geol., 322, 121–144, 2012.
Burgess, S. D., Bowring, S., and Shen, S.: High-precision timeline for
Earth's most severe extinction, P. Natl. Acad.
Sci. USA, 111, 3316–3321, 2014.
Burgess, S. D., Muirhead, J. D., and Bowring, S. A.: Initial pulse of Siberian Traps sills as the trigger of the end-Permian mass extinction, Nat. Comm., 8, 1–6, 2017.
Chen, T.: Permian ostracods from the Chihsia limestone of Lungtan, Nanking,
Acta Palaeontol. Sin., 6, 215–257, 1958.
Chen, Z., Tong, J., Liao, Z., and Chen, J.: Structural changes of marine
communities over the Permian–Triassic transition: ecologically assessing
the end-Permian mass extinction and its aftermath, Glob. Planet.
Change, 73, 123–140, 2010.
Clarkson, M., Richoz, S., Wood, R., Maurer, F., Krystyn, L., McGurty, D.,
and Astratti, D.: A new high-resolution δ13C record for the
Early Triassic: insights from the Arabian Platform, Gondwana Res., 24,
233–242, 2013.
Collinson, J. W., Kendall, C. G. S. C., and Marcantel, J. B.:
Permian-Triassic boundary in eastern Nevada and west-central Utah,
Geol. Soc. Am. Bull., 87, 821–824, 1976.
Crasquin-Soleau, S., Broutin, J., Roger, J., Platel, J.-P., Al Hashmi, H.,
Angiolini, L., Baud, A., Bucher, H., and Marcoux, J.: First Permian
ostracode fauna from the Arabian Plate (Khuff Formation, Sultanate of Oman),
Micropaleontology, 45, 163–182, 1999.
Crasquin-Soleau, S., Marcoux, J., Angiolini, L., and Nicora, A.: Palaeocopida (Ostracoda) across the Permian–Triassic events: new data from southwestern Taurus (Turkey), J. Micropalaeontol., 23, 67–76, https://doi.org/10.1144/jm.23.1.67, 2004a.
Crasquin-Soleau, S., Marcoux, J., Angiolini, L., Richoz, S., Nicora, A.,
Baud, A., and Bertho, Y.: A new ostracode fauna from the Permian-Triassic
boundary in Turkey (Taurus, Antalya Nappes), Micropaleontology, 50, 281–295,
2004b.
Crasquin-Soleau, S., Vaslet, D., and Le Nindre, Y. M.: Ostracods as markers
of the Permian/Triassic boundary in the Khuff Formation of Saudi Arabia,
Palaeontology, 48, 853–868, 2005.
Crasquin-Soleau, S., Carcione, L., and Martini, R.: Permian ostracods from
the Lercara Formation (Middle Triassic–Carnian), Sicily, Italy,
Palaeontology, 51, 537–560, 2008.
Dickens, G. R., O'Neil, J. R., Rea, D. K., and Owen, R. M.: Dissociation of
oceanic methane hydrate as a cause of the carbon isotope excursion at the
end of the Paleocene, Paleoceanography, 10, 965–971, 1995.
Dunham, R. J.: Classification of carbonate rocks according to depositional
textures, Memoires of the American Association of Petroleum Geologists, 1,
108–121, 1962.
Embry, A. F. and Klovan, J. E.: Absolute water depth limits of Late
Devonian paleoecological zones, Geol. Rundsch., 61, 672–686, 1972.
Erwin, D. H.: The Permo-Triassic extinction, Nature, 367, 231–236, 1994.
Erwin, D. H., Bowring, S. A., and Yugan, J.: End-Permian mass extinctions: a
review, Special Papers, Geol. Soc. Am., 356, 363–384, 2002.
Farabegoli, E. and Perri, M. C.: Millennial Physical Events and the
End-Permian Mass Mortality in the Western Palaeotethys: Timing and Primary
Causes, in: Earth and Life, edited by: Talent, J. A., International Year of Planet
Earth. Springer, Dordrecht, 719–758, 2012.
Flügel, E.: Microfacies of carbonate rocks, Springer, Berlin, 976 pp.,
2004.
Forel, M.-B.: Ostracods (Crustacea) associated with microbialites across the
Permian–Triassic boundary in Dajiang (Guizhou Province, south China),
Eur. J. Taxon., 19, 1–34, 2012.
Forel, M.-B.: Heterochronic growth of ostracods (Crustacea) from microbial
deposits in the aftermath of the end-Permian extinction, J.
Syst. Palaeontol., 13, 315–349, 2014.
Forel, M.-B., Crasquin, S., Kershaw, S., Feng, Q., and Collin, P.-Y.: Ostracods
(Crustacea) and water oxygenation in the earliest Triassic of South China:
implications for oceanic events at the end-Permian mass extinction,
Aust. J. Earth Sci., 56, 815–823, 2009.
Forel, M.-B., Crasquin, S., Chitnarin, A., Angiolini, L., and Gaetani, M.:
Precocious sexual dimorphism and the Lilliput effect in Neo-Tethyan
Ostracoda (Crustacea) through the Permian–Triassic boundary, Palaeontology,
58, 409–454, 2015.
Foster, W. J., Danise, S., Price, G. D., and Twitchett, R. J.: Subsequent
biotic crises delayed marine recovery following the late Permian mass
extinction event in northern Italy, PloS One, 12, e0172321, https://doi.org/10.1371/journal.pone.0172321, 2017.
Foster, W. J., Lehrmann, D. J., Yu, M., Ji, L., and Martindale, R. C.:
Persistent environmental stress delayed the recovery of marine communities
in the aftermath of the latest Permian mass extinction, Paleoceanogr.
Paleocl., 33, 338–353, 2018.
Foster, W. J., Heindel, K., Richoz, S., Gliwa, J., Lehrmann, D. J., Baud, A., Kolar-Jurkovšek, T., Aljinović, D., Jurkovšek, B., Korn, D., Martindale, R. C., and Peckmann, J.: Suppressed competitive exclusion enabled the proliferation of Permian/Triassic boundary microbialites, The Depositional Record, 6, 62–74, https://doi.org/10.1002/dep2.97, 2020.
Foster, W. J., Lehrmann, D. J., Yu, M., and Martindale, R. C.: Facies
selectivity of benthic invertebrates in a Permian/Triassic boundary
microbialite succession: Implications for the “microbialite refuge”
hypothesis, Geobiology, 17, 523–535, 2019.
Frech, F.: Geologische Reisebeobachtungen, Beiträge zur
Paläontologie Österreich-Ungarns und des Orients, 12, 169–182,
1900a.
Frech, V.: Von Eriwan nach Djulfa, Beiträge zur Paläontologie
Österreich-Ungarns und des Orients, 12, 163–168, 1900b.
Friesenbichler, E., Richoz, S., Baud, A., Krystyn, L., Sahakyan, L.,
Vardanyan, S., Peckmann, J., Reitner, J., and Heindel, K.: Sponge-microbial
build-ups from the lowermost Triassic Chanakhchi section in southern
Armenia: Microfacies and stable carbon isotopes, Palaeogeogr.
Palaeocl., 490, 653–672, 2018.
Ghaderi, A.: Stratigraphy and paleoecology of the Upper Permian to
Permian–Triassic boundary in the northwest of Iran based on
biostratigraphic data of conodonts and brachiopods, Ph.D., Ferdowsi
University of Mashhad, Mashhad, 488 pp., 2014.
Ghaderi, A., Garbelli, C., Angiolini, L., Ashouri, A. R., Korn, D., Rettori,
R., and Gharaie, M. H. M.: Faunal change near the end-Permian extinction:
the brachiopods of the Ali Bashi Mountains, NW Iran, Rivista Italiana di
Paleontologia e Stratigrafia, 120, 27–59, 2014a.
Ghaderi, A., Leda, L., Schobben, M., Korn, D., and Ashouri, A. R.: High-resolution stratigraphy of the Changhsingian (Late Permian) successions of NW Iran and the Transcaucasus based on lithological features, conodonts and ammonoids, Foss. Rec., 17, 41–57, https://doi.org/10.5194/fr-17-41-2014, 2014b.
Ghaderi, A., Sadeghi, A., Ashouri, A. R., and Korn, D.: Study of Late
Permian (Wuchiapingian) brachiopods of sedimentary succession at the Zal
section, Northwest Iran, Paleontology, 2, 219–229, 2015.
Grasby, S., Beauchamp, B., Embry, A., and Sanei, H.: Recurrent Early
Triassic ocean anoxia, Geology, 41, 175–178, 2013.
Grasby, S. E. and Beauchamp, B.: Latest Permian to Early Triassic
basin-to-shelf anoxia in the Sverdrup Basin, Arctic Canada, Chem.
Geol., 64, 232–246, 2009.
Grasby, S. E., Beauchamp, B., Bond, D. P. G., Wignall, P. B., Talavera, C.,
Galloway, J. M., Piepjohn, K., Reinhardt, L., and Blomeier, D.: Progressive
environmental deterioration in northwestern Pangea leading to the latest
Permian extinction, Geol. Soc. Am. Bull., 127, 1331–1347,
2015.
Grunt, T. A.: Nadsemeystvo Athyridacea, in: Rasvitie i smena morskikh organizmov na rubezhe Paleozoya i Mezozoya,,edited by: Ruzhencev, V. E. and Sarytcheva,
T. G.,
Trudy Paleontologicheskogo Instituta Akademiya Nauk SSSR, 108, 237–253,
1965.
Hallam, A. and Wignall, P.: Mass extinctions and sea-level changes,
Earth-Sci. Rev., 48, 217–250, 1999.
Heindel, K., Foster, W. J., Richoz, S., Birgel, D., Roden, V. J., Baud, A.,
Brandner, R., Krystyn, L., Mohtat, T., and Koşun, E.: The formation of
microbial-metazoan bioherms and biostromes following the latest Permian mass
extinction, Gondwana Res., 61, 187–202, 2018.
Heydari, E., Hassanzadeh, J., Wade, W., and Ghazi, A.: Permian–Triassic
boundary interval in the Abadeh section of Iran with implications for mass
extinction: Part 1 – Sedimentology, Palaeogeogr. Palaeocl., 193, 405–423, 2003.
Heydari, E., Arzani, N., and Hassanzadeh, J.: Mantle plume: The invisible
serial killer – Application to the Permian-Triassic boundary mass
extinction, Palaeogeogr. Palaeocl., 264, 147–162,
2008.
Hips, K. and Haas, J.: Calcimicrobial stromatolites at the
Permian–Triassic boundary in a western Tethyan section, Bükk Mountains,
Hungary, Sediment. Geol., 185, 239–253, 2006.
Hofmann, R., Hautmann, M., Brayard, A., Nuetzel, A., Bylund, K. G., Jenks,
J. F., Vennin, E., Olivier, N., and Bucher, H.: Recovery of benthic marine
communities from the end-Permian mass extinction at the low latitudes of
eastern Panthalassa, Palaeontology, 57, 547–589, 2014.
Hofmann, R., Buatois, L. A., MacNaughton, R. B., and Mángano, M. G.:
Loss of the sedimentary mixed layer as a result of the end-Permian
extinction, Palaeogeogr. Palaeocl., 428, 1–11,
2015.
Holser, W. and Magaritz, M.: Events near the Permian-Triassic boundary,
Modern Geol., 11, 155–180, 1987.
Horacek, M., Brandner, R., and Abart, R.: Carbon isotope record of the P/T
boundary and the Lower Triassic in the Southern Alps: evidence for rapid
changes in storage of organic carbon, Palaeogeogr. Palaeocl., 252, 347–354, 2007a.
Horacek, M., Richoz, S., Brandner, R., Krystyn, L., and Spötl, C.:
Evidence for recurrent changes in Lower Triassic oceanic circulation of the
Tethys: The δ13C record from marine sections in Iran,
Palaeogeogr. Palaeocl., 252, 355–369, 2007b.
Hotinski, R. M., Bice, K. L., Kump, L. R., Najjar, R. G., and Arthur, M. A.:
Ocean stagnation and end-Permian anoxia, Geology, 29, 7–10, 2001.
Isaa, A., Ghaderi, A., Ashouri, A. R., and Korn, D.: Late Permian – Early
Triassic conodonts of the Zal section at the northwest of Iran, Stratigraphy
and Sedimentology Researches, 32, 55–74, 2016.
Jattiot, R., Bucher, H., Brayard, A., Brosse, M., Jenks, J. F., and Bylund,
K. G.: Smithian ammonoid faunas from northeastern Nevada: implications for
Early Triassic biostratigraphy and correlation within the western USA basin,
Palaeontogr. Abt. A, 309, 1–89, 2017.
Jenkyns, H. C. and Clayton, C. J.: Black shales and carbon isotopes in
pelagic sediments from the Tethyan Lower Jurassic, Sedimentology, 33,
87–106, 1986.
Jin, Y., Wardlaw, B. R., Glenister, B. F., and Kotlyar, G. V.: Permian chronostratigraphic subdivisions, Episodes, 20, 10–15, 1997.
Jin, Y., Henderson, C. M., Wardlaw, B. R., Glenister, B. F., Mei, S., Shen,
S., and Wang, X.: Proposal for the Global Stratotype Section and Point
(GSSP) for the Guadalupian–Lopingian boundary, Permophiles, 39, 32–42,
2001.
Kakuwa, Y. and Matsumoto, R.: Cerium negative anomaly just before the
Permian and Triassic boundary event – the upward expansion of anoxia in the
water column, Palaeogeogr. Palaeocl., 229,
335–344, 2006.
Kershaw, S., Zhang, T., and Lan, G.: A microbialite carbonate crust at the
Permian–Triassic boundary in South China, and its palaeoenvironmental
significance, Palaeogeogr. Palaeocl., 146, 1–18,
1999.
Kershaw, S., Li, Y., Crasquin-Soleau, S., Feng, Q., Mu, X., Collin, P.-Y.,
Reynolds, A., and Guo, L.: Earliest Triassic microbialites in the South
China block and other areas: controls on their growth and distribution,
Facies, 53, 409–425, 2007.
Kershaw, S., Crasquin, S., Li, Y., Collin, P. Y., Forel, M. B., Mu, X.,
Baud, A., Wang, Y., Xie, S., Maurer, F., and Guo, L.: Microbialites and
global environmental change across the Permian-Triassic boundary: a
synthesis, Geobiology, 10, 25–47, https://doi.org/10.1111/j.1472-4669.2011.00302.x, 2012.
Kiessling, W., Schobben, M., Ghaderi, A., Hairapetian, V., Leda, L., and
Korn, D.: Pre–mass extinction decline of latest Permian ammonoids, Geology,
46, 283–286, 2018.
Knoll, A. H., Bambach, R. K., Canfield, D. E., and Grotzinger, J. P.:
Comparative Earth History and Late Permian Mass Extinction, Science, 273,
452–457, 1996.
Knoll, A. H., Fischer, W. W., Gattuso, J., and Hansson, L.: Skeletons and
ocean chemistry: the long view, Ocean Acidification, 4, 67–82, 2011.
Kolar-Jurkovšek, T., Jurkovšek, B., Nestell, G. P., and
Aljinović, D.: Biostratigraphy and sedimentology of Upper Permian and
Lower Triassic strata at Masore, western Slovenia, Palaeogeogr.
Palaeocl., 490, 38–54, 2018.
Korn, D. and Ghaderi, A.: The Late Permian araxoceratid ammonoids: a case
of repetitive temporal and spatial unfolding of homoplastic conch
characters, Neues Jahrb. Geol.
P-A, 292, 339–350, 2019.
Korn, D., Ghaderi, A., Leda, L., Schobben, M., and Ashouri, A. R.: The
ammonoids from the Late Permian Paratirolites Limestone of Julfa (East Azerbaijan, Iran),
J. Syst. Palaeontol., 14, 841–890, 2016.
Korn, D., Ghaderi, A., and Ghanizadeh Tabrizi, N.: Early Changhsingian (Late
Permian) ammonoids from NW Iran, Neues Jahrb. Geol.
P-A, 293, 37–56, 2019a.
Korn, D., Ghaderi, A., Ghanizadeh Tabrizi, N., and Gliwa, J.: The
morphospace of Late Permian coiled nautiloids, Lethaia, https://doi.org/10.1111/let.12348,
2019b.
Korte, C. and Kozur, H. W.: Carbon isotope stratigraphy across the
Permian/Triassic boundary at Jolfa (NW-Iran), Peitlerkofel (Sass de
Pütia, Sass de Putia), Pufels (Bula, Bulla), Tesero (all three Southern
Alps, Italy) and Gerennavár (Bükk Mts., Hungary), Journal of Alpine
Geology, 47, 119–135, 2005.
Korte, C. and Kozur, H. W.: Carbon-isotope stratigraphy across the
Permian–Triassic boundary: a review, J. Asian Earth Sci., 39,
215–235, 2010.
Korte, C., Kozur, H. W., and Partoazar, H.: Negative carbon isotope
excursion at the Permian/Triassic boundary section at Zal, NW Iran,
Hallesches Jahrbuch für Geowissenschaften, Reihe B, Beiheft, 18, 69–71,
2004.
Kotlyar, G. V., Zakharov, Y. D., Koczyrkevicz, B. V., Kropatcheva, G. S.,
Rostovcev, L. O., Chedija, I. O., Vuks, G. P., and Guseva, E. A.:
Posdnepermskiy etap evolyutsii organicheskogo mira. Dzhulficheskiy i
dorashamskiy yarusy SSSR, Proekt No 106 (“Permo-Triasovaya stadiya
geologicheskoy evolyutsii”) Mezhdunarodnoy programmy geologicheskoy
korrelyatsii, edited by: Gramm, M. N. and Rostovcev, L. O., NAUKA,
Leningrad, 199 pp., 1983.
Kotlyar, G. V., Zakharov, Y. D., Vuks, G. P., Kropatcheva, G. S., Pronina,
G. P., Chedija, I. O., and Burago, V. I.: Posdnepermskiy etap evolyutsii
organicheskogo mira, Midiskiy yarus SSSR., Proekt No 106 (“Permo-Triasovaya
stadiya geologicheskoy evolyutsii”) Mezhdunarodnoy programmy geologicheskoy
korrelyatsii, edited by: Gramm, M. N. and Rostovcev, L. O., NAUKA,
Leningrad, 184 pp., 1989.
Kotlyar, G. V., Kozur, H., and Zakharov, Y. D.: The Transcaucasian sections
Dorasham 2 (Azerbaidzhan) and Sovetashen (Armenia), two candidates for P/T
boundary reference sections, Albertiana, 12, 36–38, 1993.
Kozur, H., Leven, E. Y., Lozinskiy, V. R., and Pjatakova, M. V.: Division of
the Permian-Triassic boundary beds in Trans-Caucasus on the basis of
conodonts, Byulleten' Moskovskogo obshchestva ispytatelei
prirody, Otdel Geologicheskiy, 53, 15–24, 1978 (in Russian).
Kozur, H., Leven, E. Y., Lozinskiy, V. R., and Pjatakova, M. V.: Subdivision
of Permian-Triassic boundary beds in Transcaucasia on the basis of
conodonts, Int. Geol. Rev., 22, 361–368, 1980.
Kozur, H. W.: Beiträge zur Conodontenfauna des Perm,
Geologisch-Paläontologische Mitteilungen Innsbruck, 5, 1–44, 1975.
Kozur, H. W.: Pelagic uppermost Permian and the Permian–Triassic boundary
conodonts of Iran, Part I: Taxonomy, Hallesches Jahrbuch für
Geowissenschaften, Reihe B, Beiheft, 18, 39–68, 2004a.
Kozur, H. W.: Pelagic uppermost Permian and the Permian-Triassic boundary
conodonts of Iran. Part 1: Taxonomy, Hallesches Jahrbuch für
Geowissenschaften, Reihe B, Geologie Paläontologie Mineralogie, 18, 39–68,
2004b.
Kozur, H. W.: Pelagic uppermost Permian and the Permian–Triassic boundary
conodonts of Iran. Part II: Investigated sections and evaluation of the
conodont faunas, Hallesches Jahrbuch für Geowissenschaften, Reihe B,
Beiheft, 19, 49–86, 2005.
Kozur, H. W.: Biostratigraphy and event stratigraphy in Iran around the
Permian–Triassic Boundary (PTB): implications for the causes of the PTB
biotic crisis, Glob. Planet. Change, 55, 155–176, 2007a.
Kozur, H. W.: Biostratigraphy and event stratigraphy in Iran around the
Permian–Triassic Boundary (PTB): Implications for the causes of the PTB
biotic crisis, Glob. Planet. Change, 55, 155–176, 2007b.
Kruglov, M. V.: Verkhne-kamennougol'nye i artinskie nautilidy Urala, Trudy
Geologicheskogo Muzeya Akademiya Nauk SSSR, 3, 63–206, 1928.
Kump, L. R.: Interpreting carbon-isotope excursions: Strangelove oceans,
Geology, 19, 299–302, 1991.
Leda, L., Korn, D., Ghaderi, A., Hairapetian, V., Struck, U., and Reimold,
W. U.: Lithostratigraphy and carbonate microfacies across the
Permian–Triassic boundary near Julfa (NW Iran) and in the Baghuk Mountains
(Central Iran), Facies, 60, 295–325, 2014.
Lehrmann, D. J., Bentz, J. M., Wood, T., Goers, A., Dhillon, R., Akin, S.,
Li, X. W., Payne, J. L., Kelley, B. M., Meyer, K. M., Schaal, E. K., Suarez,
M. B., Yu, M. Y., Qin, Y. J., Li, R. X., Minzoni, M., and Henderson, C. M.:
Environmental controls on the genesis of marine microbialites and
dissolution surface associated with the end-Permian mass extinction: new
sections and observations from the Nanpanjiang basin, South China, Palaios,
30, 529–552, 2015.
Leonova, T. B.: Permian ammonoid biostratigraphy, in: The Permian Timescale,
edited by: Lucas, S. G. and Shen, S. Z., Geological Society, London,
Special Publications 455, Geol. Soc. Lond., 19, 185–203, 2016.
Luo, C. and Reitner, J.: First report of fossil “keratose” demosponges in
Phanerozoic carbonates: preservation and 3-D reconstruction,
Naturwissenschaften, 101, 467–477, 2014.
Majorowicz, J., Grasby, S., Safanda, J., and Beauchamp, B.: Gas hydrate
contribution to Late Permian global warming, Earth Planet. Sc.
Lett., 393, 243–253, 2014.
Marenco, P. J., Griffin, J. M., Fraiser, M. L., and Clapham, M. E.:
Paleoecology and geochemistry of Early Triassic (Spathian) microbial mounds
and implications for anoxia following the end-Permian mass extinction,
Geology, 40, 715–718, 2012.
Marshall, J. D.: Climatic and oceanographic isotopic signals from the
carbonate rock record and their preservation, Geol. Mag., 129,
143–160, 1992.
Martindale, R. C., Foster, W., and Velledits, F.: The survival, recovery,
and diversification of metazoan reef ecosystems following the end-Permian
mass extinction event, Palaeogeogr. Palaeocl.,
513, 100–115, https://doi.org/10.1016/j.palaeo.2017.08.014, 2019.
Mei, S., Henderson, C. M., and Cao, C.: Conodont sample-population approach
to defining the base of the Changhsingian Stage, Lopingian Series, Upper
Permian, in: The Palynology and Micropalaeontology of Boundaries, edited by:
Beaudoin, A. B. and Head, M. J., 230, Geological Society of London, London,
105–121, 2004.
Mei, S., Jin, Y., and Wardlaw, B. R.: Succession of Wuchiapingian conodonts
from northeastern Sichuan and its worldwide correlation, Acta
Micropalaeontol. Sin., 11, 121–139, 1994.
Mei, S., Jin, Y., and Wardlaw, B. R.: Conodont succession of the
Guadalupian-Lopingian boundary strata in Laibin of Guangxi, China and West
Texas, USA, in: Permian Stratigraphy, Environments and Resources, edited by:
Jin, Y., Wardlaw, B. R., and Wang, Y., 9, China University of Science and
Technology Press, 53–76, 1998a.
Mei, S., Zhang, K., and Wardlaw, B. R.: A refined succession of
Changhsingian and Griesbachian neogondolellid conodonts from the Meishan
section, candidate of the global stratotype section and point of the
Permian–Triassic boundary, Palaeogeogr. Palaeocl., 143, 213–226, 1998b.
Melnyk, D. H. and Maddocks, R. F.: Ostracode biostratigraphy of the
Permo-Carboniferous of central and north-central Texas, Part I:
paleoenvironmental framework, Micropaleontology, 34, 1–20, 1988.
Metcalfe, I.: Changhsingian (Late Permian) conodonts from Son La, northwest
Vietnam and their stratigraphic and tectonic implications, J. Asian
Earth Sci., 50, 141–149, 2012.
Mette, W.: Upper Permian and lowermost Triassic stratigraphy, facies and
ostracods in NW Iran-implications for the P/T extinction event,
Stratigraphy, 5, 205–219, 2008.
Mette, W.: Ostracods from the Upper Permian and Permian/Triassic boundary
interval of Northwest Iran, Revista española de micropaleontología,
42, 11–35, 2010.
Mette, W. and Mohtat-Aghai, P.: Late Permian and Early Triassic microfossil
assemblages of Iran, Berichte des Instituts für Erdwissenschaften
Karl-Franzens Universität Graz, 9, 263–265, 2004.
Mohtat Aghai, P., Vachard, D., and Krainer, K.: Transported foraminifera in
Palaeozoic deep red nodular limestones exemplified by latest Permian
Neoendothyra in the Zal section (Julfa area, NW Iran), Revista española
de micropaleontología, 41, 197–213, 2009.
Muttoni, G., Gaetani, M., Kent, D. V., Sciunnach, D., Angiolini, L., Berra,
F., Garzanti, E., Mattei, M., and Zanchi, A.: Opening of the Neo-Tethys
Ocean and the Pangea B to Pangea A transformation during the Permian,
GeoArabia, 14, 17–48, 2009a.
Muttoni, G., Mattei, M., Balini, M., Zanchi, A., Gaetani, M., and Berra, F.:
The drift history of Iran from the Ordovician to the Triassic, Geological
Society, London, Special Publications, 312, 7–29, 2009b.
Perri, M. C. and Farabegoli, E.: Conodonts across the Permian–Triassic
boundary in the Southern Alps, Courier Forschungsinstitut Senckenberg, 245,
281–313, 2003.
Prinoth, H. and Posenato, R.: Late Permian Nautiloids from the
Bellerophon Formation of the Dolomites (Italy), Palaeontogr. Abt. A, 282,
135–165, 2007.
Pruss, S. B., Corsetti, F. A., and Bottjer, D. J.: The unusual sedimentary
rock record of the Early Triassic: a case study from the southwestern United
States, Palaeogeogr. Palaeocl., 222, 33–52, 2005.
Pruss, S. B., Bottjer, D. J., Corsetti, F. A., and Baud, A.: A global marine
sedimentary response to the end-Permian mass extinction: Examples from
southern Turkey and the western United States, Earth Sci. Rev., 78,
193–206, 2006.
Rampino, M. R. and Caldeira, K.: Major perturbation of ocean chemistry and
a “Strangelove Ocean” after the end-Permian mass extinction, Terra Nova,
17, 554–559, 2005.
Reed, F. R. C.: New fossils from the Productus Limestones of the Salt Range, with
notes on other species, Memoirs of the Geological Survey of India,
Palaeontologia Indica, 17, 1–56, 1931.
Reed, F. R. C.: Brachiopoda and Mollusca from the Productus limestones of the Salt
Range, Palaeontologia Indica, New Series, 23, 1–768, 1944.
Richoz, S.: Stratigraphie et variations isotopiques du carbone dans le
Permien supérieur et le Trias inférieur de quelques localités de
la Néotéthys (Turquie, Oman et Iran), Memoirs de Géologie
(Lausanne), 1–251, 2006.
Richoz, S., Krystyn, L., Baud, A., Brandner, R., Horacek, M., and
Mohtat-Aghai, P.: Permian–Triassic boundary interval in the Middle East
(Iran and N. Oman): Progressive environmental change from detailed carbonate
carbon isotope marine curve and sedimentary evolution, J. Asian
Earth Sci., 39, 236–253, 2010.
Ridgwell, A.: A Mid Mesozoic Revolution in the regulation of ocean
chemistry, Mar. Geol., 217, 339–357, 2005.
Rostovtsev, K. O. and Azaryan, N. R.: The Permian-Triassic Boundary in
Transcaucasia, Canadian Society of Petroleum Geologists
SpecialPublications, 2, 89–99, 1973.
Rothman, D. H., Fournier, G. P., French, K. L., Alm, E. J., Boyle, E. A.,
Cao, C., and Summons, R. E.: Methanogenic burst in the end-Permian carbon
cycle, P. Natl. Acad. Sci. USA, 111, 5462–5467,
2014.
Ruban, D. A., Al-Husseini, M. I., and Iwasaki, Y.: Review of Middle East
Paleozoic plate tectonics, GeoArabia, 12, 35–56, 2007a.
Ruban, D. A., Zerfass, H., and Yang, W.: A new hypothesis on theposition of
the Greater Caucasus Terrane in the Late Palaeozoic–Early Mesozoic based on
palaeontologic and lithologic data, Trabajos de Geologia, 27, 19–27, 2007b.
Ruzhencev, V. E. and Shevyrev, A. A.: Ammonoidei, in: Razvitie i smena morskikh organizmov na Rubezhe
Paleozoya i Mezozoya, edited by: Ruzhencev, V. E. and
Sarytcheva, T. G., Trudy Paleontologicheskogo Instituta Akademiya Nauk
SSSR, 108, 47–57, 1965.
Ruzhencev, V. E., Sarytcheva, T. G., and Shevyrev, A. A.:
Biostratigraficheskie vyvody, in:
Rasvitie i smena morskikh organizmov na rubezhe Paleozoya i Mezozoya, edited by: Ruzhencev, V. E. and Sarytcheva, T. G., Trudy
Paleontologicheskogo Instituta Akademiya Nauk SSSR, 108, 93–116, 1965.
Sarytcheva, T. G. and Sokolskaja, A. N.: Otryad Productida, in: Rasvitie i smena morskikh organizmov na rubezhe
Paleozoya i Mezozoya, edited by: Ruzhencev,
V. E. and Sarytcheva, T. G., Trudy Paleontologicheskogo Akademiya Nauk SSSR, 108,
209–232, 1965.
Schobben, M., Joachimski, M. M., Korn, D., Leda, L., and Korte, C.:
Palaeotethys seawater temperature rise and an intensified hydrological cycle
following the end-Permian mass extinction, Gondwana Res., 26, 675–683,
2014.
Schobben, M., Stebbins, A., Ghaderi, A., Strauss, H., Korn, D., and Korte,
C.: Flourishing ocean drives the end-Permian marine mass extinction,
P. Natl. Acad. Sci. USA, 112, 10298–10303, 2015.
Schobben, M., Stebbins, A., Ghaderi, A., Strauss, H., Korn, D., and Korte,
C.: Eutrophication, microbial-sulfate reduction and mass extinctions,
Communicative and Integrative Biology, 9, e1115162, https://doi.org/10.1080/19420889.2015.1115162, 2016.
Schobben, M., van de Velde, S., Gliwa, J., Leda, L., Korn, D., Struck, U., Ullmann, C. V., Hairapetian, V., Ghaderi, A., Korte, C., Newton, R. J., Poulton, S. W., and Wignall, P. B.: Latest Permian carbonate carbon isotope variability traces heterogeneous organic carbon accumulation and authigenic carbonate formation, Clim. Past, 13, 1635–1659, https://doi.org/10.5194/cp-13-1635-2017, 2017.
Schobben, M., Heuer, F., Tietje, M., Ghaderi, A., Korn, D., Korte, C., and
Wignall, P. B.: Chemostratigraphy Across the Permian-Triassic Boundary: The
Effect of Sampling Strategies on Carbonate Carbon Isotope Stratigraphic
Markers, in: Chemostratigraphy Across Major Chronological Boundaries,
Geophysical Monograph 240, First Edition, edited by: Sial, A. N., Gaucher,
C., Muthuvairavasamy, R., and Valderez, P. F., John Wiley & Sons, Inc., 159–181,
2019.
Scholle, P. A. and Arthur, M. A.: Carbon isotope fluctuations in Cretaceous
pelagic limestones: potential stratigraphic and petroleum exploration tool,
AAPG Bull., 64, 67–87, 1980.
Schubert, J. K. and Bottjer, D. J.: Aftermath of the Permian-Triassic mass
extinction event: Paleoecology of Lower Triassic carbonates in the western
USA, Palaeogeogr. Palaeocl., 116, 1–39, 1995.
Sedlacek, A. R., Saltzman, M. R., Algeo, T. J., Horacek, M., Brandner, R.,
Foland, K., and Denniston, R. F.: 87Sr∕86Sr stratigraphy from the
Early Triassic of Zal, Iran: Linking temperature to weathering rates and the
tempo of ecosystem recovery, Geology, 42, 779–782, 2014.
Shen, S.-Z.: The conodont species Clarkina orientalis (Barskov &
Koroleva, 1970) and its spatial and temporal distribution, Permophiles, 50,
25–37, 2007.
Shen, S.-Z. and Mei, S.-L.: Lopingian (Late Permian) high-resolution
conodont biostratigraphy in Iran with comparison to South China zonation,
Geol. J., 45, 135–161, 2010.
Shevyrev, A. A.: Nadortyad Ammonoidea, in: Rasvitie i smena morskikh organizmov na rubezhe Paleozoya i Mezozoya, edited by: Ruzhencev, V. E. and Sarytcheva,
T. G.,
Trudy Paleontologicheskogo Instituta Akademiya Nauk SSSR, 108, 166–182,
1965.
Shevyrev, A. A. and Ermakova, S. P.: A Contribution to the Systematics of
Ceratites, Paleontologicheskiy Zhurnal, 1979, 52–58, 1979.
Shimansky, V. N.: Podotryad Nautiloidea, in: Razvitie i smena morskikh organizmov na Rubezhe
Paleozoya i Mezozoya, edited by: Ruzhencev, V. E. and
Sarytcheva, T. G., Trudy Paleontologicheskogo Instituta Akademiya Nauk
SSSR, 108, 157–165, 1965.
Sokolskaja, A. N.: Otryad Orthida, in: Razvitie i smena morskikh organizmov na Rubezhe Paleozoya i
Mezozoya, edited by: Ruzhencev, V. E. and Sarytcheva, T. G., Trudy Paleontologicheskogo Instituta Akademiya Nauk SSSR, 108,
198–203, 1965.
Stampfli, G. M. and Borel, G. D.: A plate tectonic model for the Paleozoic
and Mesozoic constrained by dynamic plate boundaries and restored synthetic
oceanic isochrons, Earth Planet. Sc. Lett., 196, 17–33, 2002.
Stampfli, G. M. and Borel, G. D.: The TRANSMED transects in space and time:
constraints on the paleotectonic evolution of the Mediterranean domain, in:
The TRANSMED Atlas, The Mediterranean region from crust to mantle, Springer,
53–80, 2004.
Stepanov, D. L., Golshani, F., and Stöcklin, J.: Upper Permian and
Permian–Triassic Boundary in North Iran., Geolological Survey of Iran,
Report, 12, 1–72, 1969.
Stoyanow, A. A.: On the character of the boundary of Palaeozoic and Mesozoic
near Djulfa, Zapiski Imperatorskago St.-Peterburgskago Mineralogiceskago
Obscestva = Verhandlungen der Russisch-Kaiserlichen Mineralogischen
Gesellschaft zu St. Petersburg, 2. Serie, 47, 61–135, 1910.
Sun, Y., Joachimski, M. M., Wignall, P. B., Yan, C., Chen, Y., Jiang, H.,
Wang, L., and Lai, X: Lethally hot temperatures during the Early Triassic
greenhouse, Science, 338, 366–370, 2012.
Svensen, H., Planke, S., Polozov, A. G., Schmidbauer, N., Corfu, F.,
Podladchikov, Y. Y., and Jamtveit, B.: Siberian gas venting and the
end-Permian environmental crisis, Earth Planet. Sc. Lett., 277,
490–500, 2009.
Swart, P. K.: Global synchronous changes in the carbon isotopic composition
of carbonate sediments unrelated to changes in the global carbon cycle,
P. Natl. Acad. Sci. USA, 105, 13741–13745, 2008.
Taraz, H., Golshani, F., Nakazawa, K., Shimizu, D., Bando, Y., Ishii, K.-i.,
Murata, M., Okimura, Y., Sakagami, S., and Nakamura, K.: The Permian and the
Lower Triassic systems in Abadeh region, central Iran, Mem Fac Sci Kyoto
Univ. Ser. Geol. Miner., 47, 62–133, 1981.
Teichert, C. and Kummel, B.: Nautiloid cephalopods from the Julfa Beds,
Upper Permian, Northwest Iran., Bulletin of the Museum of Comparative
Zoology, Harvard University, 144, 409–434, 1973.
Teichert, C., Kummel, B., and Sweet, W. C.: Permian-Triassic strata,
Kuh-e-Ali Bashi, Northwestern Iran, Bulletin of the Museum of Comparative
Zoology, Harvard University, 145, 359–472, 1973.
von Arthaber, G. : Das jüngere Paläozoicum aus der Araxes-Enge bei
Djulfa, Beiträge zur Paläontologie Österreich-Ungarns und des
Orients, 12, 209–302, 1900.
von Möller, V.: Üeber die bathrologische Stellung des jüngeren
paläozoischen Schichtensystems von Djoulfa in Armenien, Neues Jahrbuch
für Mineralogie, Geol. Palaeontol., 1879, 225–243, 1879.
Waagen, W.: Salt Range fossils, 1. Productus Limestone fossils,
Palaeontologia Indica, 1, 1–85, 1879.
Wang, C.: Conodont evolutionary lineage and zonation for the Latest Permian
and the Earliest Triassic, Permophiles, 29, 30–37, 1996.
Wang, C. and Wang, S.: Conodonts from Permian-Triassic boundary beds in
Jiangxi, China and evolutionary lineage of Hindeodus-Isarcicella, Acta Palaeontol. Sin.,
36, 151–178, 1997.
Wang, C. and Wang, Z.: Permian conodont biostratigraphy of China,
Geological Society of America, Special Paper, 187, 227–236, 1981.
Wang, K., Geldsetzer, H. H. J., and Krouse, H. R.: Permian-Triassic
extinction: Organic δ13C evidence from British Columbia,
Canada, Geology, 22, 580–584, 1994.
Wang, S.: Late Permian and Early Triassic ostracods of western Guizhou and
northeastern Yunnan, Acta Palaeontol. Sin., 7, 277–308, 1978.
Wignall, P. B. and Twitchett, R. J.: Extent, duration, and nature of the
Permian-Triassic superanoxic event, Special Papers, Geol. Soc.
Am., 356, 395–414, 2002.
Wignall, P. B., Newton, R., and Brookfield, M. E.: Pyrite framboid evidence
for oxygen-poor deposition during the Permian–Triassic crisis in Kashmir,
Palaeogeogr. Palaeocl., 216, 183–188, 2005.
Winguth, C. and Winguth, A. M. E.: Simulating Permian-Triassic oceanic
anoxia distribution: Implications for species extinction and recovery,
Geology, 40, 127–130, 2011.
Woods, A. D., Bottjer, D. J., Mutti, M., and Morrison, J.: Lower Triassic
large sea-floor carbonate cements: their origin and a mechanism for the
prolonged biotic recovery from the end-Permian mass extinction, Geology, 27,
645–648, 1999.
Xie, S., Pancost, R., Huang, X., Jiao, D., Lu, L., Huang, J., Yang, F., and
Evershed, R.: Molecular and isotopic evidence for episodic environmental
change across the Permo/Triassic boundary at Meishan in South China, Glob.
Planet. Change, 55, 56–65, 2007.
Yin, H., Zhang, K., Tong, J., Zunyi, Y., and Wu, S.: The Global Stratotype
Section and Point (GSSP) of the Permian-Triassic Boundary, Episodes, 24,
102–114, 2001.
Yin, H., Xie, S., Luo, G., Algeo, T. J., and Zhang, K.: Two episodes of
environmental change at the Permian–Triassic boundary of the GSSP section
Meishan, Earth-Sci. Rev., 115, 163–172, 2012.
Yuan, D., Shen, S., Henderson, C. M., Chen, J., Zhang, H., and Feng, H.:
Revised conodont-based integrated high-resolution timescale for the
Changhsingian Stage and end-Permian extinction interval at the Meishan
sections, South China, Lithos, 204, 220–245, 2014.
Zakharov, Y. D.: The Permo-Triassic boundary in the southern and eastern
USSR and its intercontinental correlation, edited by: Sweet, W. C.,
Zunyi, Y., Dickins, J. M., and Hongfu, Y., Cambridge University Press,
Cambridge, 46–55, 1992.
Zakharov, Y. D., Biakov, A., Baud, A., and Kozur, H.: Significance of Caucasian
sections for working out carbon-isotope standard for Upper Permian and Lower
Triassic (Induan) and their correlation with the Permian of north-eastern
Russia, J. China Univ. Geosci., 16, 141–151, 2005.
Zeebe, R. E. and Westbroek, P.: A simple model for the CaCO3
saturation state of the ocean: The “Strangelove,” the “Neritan,” and the
“Cretan” Ocean, Geochem. Geophy. Geosy., 4, 1–24, 2003.
Zhang, F., Romaniello, S. J., Algeo, T. J., Lau, K. V., Clapham, M. E.,
Richoz, S., Herrmann, A. D., Smith, H., Horacek, M., and Anbar, A. D.:
Multiple episodes of extensive marine anoxia linked to global warming and
continental weathering following the latest Permian mass extinction, Sci.
Adv., 4, e1602921, https://doi.org/10.1126/sciadv.1602921, 2018.
Zhao, J., Liang, X., and Zheng, Z.: Late Permian cephalopods from South
China, Palaeontol. Sin. Ser. B, 12, 1–194, 1978.
Short summary
The Permian–Triassic boundary section of the Aras Valley (NW Iran) shows a complete sedimentary succession, bearing great potential for studying the change of environmental conditions that paralleled the end-Permian mass extinction. The lithological succession; carbonate microfacies characteristics; stable isotope dynamics; and conodont, ostracod, and ammonoid stratigraphy allow for a detailed study of the chronological succession of the events.
The Permian–Triassic boundary section of the Aras Valley (NW Iran) shows a complete sedimentary...