Articles | Volume 24, issue 2
https://doi.org/10.5194/fr-24-395-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/fr-24-395-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Albian to Turonian agglutinated foraminiferal assemblages of the Lower Saxony Cretaceous sub-basins – implications for sequence stratigraphy and paleoenvironmental interpretation
Richard M. Besen
CORRESPONDING AUTHOR
Department of Earth Sciences, Institute of Geological Sciences, Freie
Universität Berlin, Malteserstraße 74–100, 12249 Berlin, Germany
Ulrich Struck
Department of Earth Sciences, Institute of Geological Sciences, Freie
Universität Berlin, Malteserstraße 74–100, 12249 Berlin, Germany
Museum für Naturkunde Berlin, Leibniz Institute for Evolution and
Biodiversity Science, Invalidenstraße 43, 10115 Berlin, Germany
Ekbert Seibertz
Institute of Geoecology, University of Braunschweig, Langer Kamp 19c,
38106 Braunschweig, Germany
Related authors
No articles found.
Nariman Mahmoodi, Ulrich Struck, Michael Schneider, and Christoph Merz
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2024-214, https://doi.org/10.5194/hess-2024-214, 2024
Preprint under review for HESS
Short summary
Short summary
Understanding water balance in lakes is complex. We studied Lake Gross Glienicke in Germany, using an innovative method that combines isotope measurements and a hydrological model to improve estimates of water inflow and evaporation. Our findings show a high correlation between the two approaches, leading to better predictions of lake water dynamics. This research offers a reliable way to evaluate the model outputs.
Gabrielle Rodrigues de Faria, David Lazarus, Johan Renaudie, Jessica Stammeier, Volkan Özen, and Ulrich Struck
Clim. Past, 20, 1327–1348, https://doi.org/10.5194/cp-20-1327-2024, https://doi.org/10.5194/cp-20-1327-2024, 2024
Short summary
Short summary
Export productivity is part of the global carbon cycle, influencing the climate system via biological pump. About 34 million years ago, the Earth's climate experienced a climate transition from a greenhouse state to an icehouse state with the onset of ice sheets in Antarctica. Our study shows important productivity events in the Southern Ocean preceding this climatic shift. Our findings strongly indicate that the biological pump potentially played an important role in that past climate change.
Richard M. Besen, Kathleen Schindler, Andrew S. Gale, and Ulrich Struck
J. Micropalaeontol., 42, 117–146, https://doi.org/10.5194/jm-42-117-2023, https://doi.org/10.5194/jm-42-117-2023, 2023
Short summary
Short summary
Turonian–Coniacian agglutinated foraminiferal assemblages from calcareous deposits from the temperate European shelf realm were studied. Acmes of agglutinated foraminifera correlate between different sections and can be used for paleoenvironmental analysis expressing inter-regional changes. Agglutinated foraminiferal morphogroups display a gradual shift from Turonian oligotrophic environments towards more mesotrophic conditions in the latest Turonian and Coniacian.
Gerhard Franz, Vladimir Khomenko, Peter Lyckberg, Vsevolod Chournousenko, Ulrich Struck, Ulrich Gernert, and Jörg Nissen
Biogeosciences, 20, 1901–1924, https://doi.org/10.5194/bg-20-1901-2023, https://doi.org/10.5194/bg-20-1901-2023, 2023
Short summary
Short summary
This research describes the occurrence of Precambrian fossils, with exceptionally well preserved morphology in 3D. These microfossils reach a size of millimeters (possibly up to centimeters) and thus indicate the presence of multicellular eukaryotes. Many of them are filamentous, but other types were also found. These fossils lived in a depth of several hundred meters and thus provide good evidence of a continental the deep biosphere, from a time generally considered as the
boring billion.
Dieter Korn, Lucyna Leda, Franziska Heuer, Hemen Moradi Salimi, Elham Farshid, Amir Akbari, Martin Schobben, Abbas Ghaderi, Ulrich Struck, Jana Gliwa, David Ware, and Vachik Hairapetian
Foss. Rec., 24, 171–192, https://doi.org/10.5194/fr-24-171-2021, https://doi.org/10.5194/fr-24-171-2021, 2021
Short summary
Short summary
Permian–Triassic boundary sections at Baghuk Mountain are investigated with respect to their lithological succession, biostratigraphy and chemostratigraphy. Ammonoids enable the clear separation of Wuchiapingian, Changhsingian and Dienerian assemblages. Early Triassic microbialites occur in various horizons. The carbon isotope curve shows a late Changhsingian negative excursion and the lightest values at the base of the Triassic.
Jana Gliwa, Abbas Ghaderi, Lucyna Leda, Martin Schobben, Sara Tomás, William J. Foster, Marie-Béatrice Forel, Nahideh Ghanizadeh Tabrizi, Stephen E. Grasby, Ulrich Struck, Ali Reza Ashouri, and Dieter Korn
Foss. Rec., 23, 33–69, https://doi.org/10.5194/fr-23-33-2020, https://doi.org/10.5194/fr-23-33-2020, 2020
Short summary
Short summary
The Permian–Triassic boundary section of the Aras Valley (NW Iran) shows a complete sedimentary succession, bearing great potential for studying the change of environmental conditions that paralleled the end-Permian mass extinction. The lithological succession; carbonate microfacies characteristics; stable isotope dynamics; and conodont, ostracod, and ammonoid stratigraphy allow for a detailed study of the chronological succession of the events.
Related subject area
Taxonomy and biodiversity
Ingensalinae subfam. nov. (Hemiptera: Fulgoromorpha: Fulgoroidea: Inoderbidae), a new planthopper subfamily from mid-Cretaceous Kachin amber from Myanmar
The first xiphydriid wood wasp in Cretaceous amber (Hymenoptera: Xiphydriidae) and a potential association with Cycadales
Past ecosystems drive the evolution of the early diverged Symphyta (Hymenoptera: Xyelidae) since the earliest Eocene
Ontogenetic development of the European basal aquatic turtle Pleurosternon bullockii (Paracryptodira, Pleurosternidae)
Cretopachyderes gen. nov., a new remarkable click beetle (Coleoptera: Elateridae: Agrypninae) from the mid-Cretaceous Burmese amber
The genus Allodia (Diptera: Mycetophilidae) in Miocene Ethiopian amber
The southernmost occurrence of Ichthyosaurus from the Sinemurian of Portugal
A new odontocete (Inioidea, Odontoceti) from the late Neogene of North Carolina, USA
The first Fulgoridae (Hemiptera: Fulgoromorpha) from the Eocene of the central Qinghai–Tibetan Plateau
New shell information and new generic attributions for the Egyptian podocnemidid turtles “Podocnemis” fajumensis (Oligocene) and “Podocnemis” aegyptiaca (Miocene)
At the crossroads: early Miocene marine fishes of the proto-Mediterranean Sea
The first extinct species of Acritus LeConte, 1853 (Histeridae: Abraeinae) from Eocene Baltic amber: a microscopic beetle inclusion studied with X-ray micro-computed tomography
A new enigmatic lineage of Dascillidae (Coleoptera: Elateriformia) from Eocene Baltic amber described using X-ray microtomography, with notes on Karumiinae morphology and classification
First record of the subfamily Sagrinae (Coleoptera: Chrysomelidae) from the Eocene of North America
The polycentropodid genus Cernotina (Insecta, Trichoptera) in Miocene Dominican amber
Two new species of the family Rhynchitidae (Coleoptera: Curculionoidea) from Eocene Baltic amber, with key to species and assumed trophic relationships
Extensive vertebrate tracksite from the Upper Red Formation (middle–late Miocene), west Zanjan, northwestern Iran
A new delphinid from the lower Pliocene of the North Sea and the early radiations of true dolphins
A new Eocene Bacanius species (Histeridae: Dendrophilinae) from Baltic amber
Selenogonus narinoensis Stirton, 1947 (Tayassuidae, Cetartiodactyla, Mammalia): taxonomic status and paleobiogeographic implications
Osteology of the Permian temnospondyl amphibian Glanochthon lellbachae and its relationships
First occurrence of brachyopid temnospondyls in Southeast Asia and review of the Mesozoic amphibians from Thailand
The first described turtle beetles from Eocene Baltic amber, with notes on fossil Chelonariidae (Coleoptera: Byrrhoidea)
A new late Miocene bovid (Mammalia: Artiodactyla: Bovidae) from Çorakyerler (Turkey)
A new species of the genus Glaesotropis Gratshev and Zherikhin, 1995 (Coleoptera, Anthribidae) from Rovno amber
New genus of the tribe Ceutorhynchini (Coleoptera: Curculionidae) from the late Oligocene of Enspel, southwestern Germany, with a remark on the role of weevils in the ancient food web
A new wing skeleton of Forfexopterus (Pterosauria: Ctenochasmatidae) from the Early Cretaceous Jehol Biota reveals a developmental variation
An ankylosaurian dinosaur from the Cenomanian Dunvegan Formation of northeastern British Columbia, Canada
The first record of Brentidae (Coleoptera) in Eocene Rovno amber with description of a new fossil species of Toxorhynchus Scudder, 1893
An unfamiliar physeteroid periotic (Cetacea: Odontoceti) from the German middle–late Miocene North Sea basin at Groß Pampau
A revision of Ophidiaster davidsoni de Loriol and Pellat 1874 from the Tithonian of Boulogne (France) and its transfer from the Valvatacea to the new forcipulatacean genus Psammaster gen. nov.
Two new species of Mennerotodus Zhelezko, 1994 (Chondrichthyes: Lamniformes: Odontaspididae), from the Paleogene of the southeastern United States
Description of the male of fossil Calomicrus eocenicus Bukejs et Bezděk (Coleoptera: Chrysomelidae: Galerucinae) from Eocene Baltic amber using X-ray microtomography
An alternative interpretation of Peltochelys duchastelii as a paracryptodire
A new fossil species of Attagenus Latreille (Coleoptera: Dermestidae) in Rovno and Baltic ambers, with a brief review of known fossil beetles from the Rovno amber Lagerstätte
A new Eocene genus of the subtribe Tylodina (Coleoptera: Curculionidae) and notes concerning local differences of Baltic amber in the Kaliningrad Region
A new, rare and small “lobeattid” species (Insecta: Archaeorthoptera) found at Xiaheyan (Pennsylvanian; Ningxia, China)
On the first Silis Charpentier, 1825 from Baltic amber (Coleoptera, Cantharidae)
The second fossil species of Cathartosilvanus (Coleoptera: Cucujoidea: Silvanidae) from Eocene Baltic amber
Microanatomy and growth of the mesosaurs Stereosternum tumidum and Brazilosaurus sanpauloensis (Reptilia, Parareptilia)
The new encrusting microproblematicum Circumpodium enigmaticum and its attachment trace Circumpodichnus serialis from the Middle Jurassic of Normandy (France)
Dignoptinus, a new genus for fossil Dignomus regiomontanus Alekseev from Eocene Baltic amber, and new status for Bruchoptinus Reitter and Pseudoptinus Reitter (Coleoptera: Ptinidae)
An insect wing discovered in the Early Permian Taiyuan Formation (Shanxi Province, China)
Presence of the Jehol Biota turtle Ordosemys liaoxiensis in the Early Cretaceous Hengtongshan Formation of southern Jilin Province, China
A new bizarre dysoneurid species (Insecta, Trichoptera) in Burmese amber
Groehnius, a new genus of Eugnomini (Coleoptera: Curculionidae) from Eocene Baltic amber
Notes on rhopalosomatid wasps of Dominican and Mexican amber (Hymenoptera: Rhopalosomatidae) with a description of the first fossil species of Rhopalosoma Cresson, 1865
First record of the tribe Naupactini (Coleoptera: Curculionidae) in Rovno amber
On a remarkable new species of Tharsis, a Late Jurassic teleostean fish from southern Germany: its morphology and phylogenetic relationships
The skull of the carettochelyid turtle Anosteira pulchra from the Eocene (Uintan) of Wyoming and the carotid canal system of carettochelyid turtles
Cihang Luo, Zhishun Song, Xiaojing Liu, Tian Jiang, Edmund A. Jarzembowski, and Jacek Szwedo
Foss. Rec., 24, 455–465, https://doi.org/10.5194/fr-24-455-2022, https://doi.org/10.5194/fr-24-455-2022, 2022
Short summary
Short summary
Ingensala xiai gen. et sp. nov. is described based on a specimen from mid-Cretaceous Burmese amber. The new genus can be definitely attributed to Inoderbidae mainly based on its head structure, pronotum, and mesonotum without median and lateral carinae, but it differs from the type genus to a large extent and two new subfamilies are established for these two genera respectively. The similarities between Ingensala, Qiyangiricaniidae, Weiwoboidae, and Tropiduchidae are discussed.
Jia Gao, Michael S. Engel, Friðgeir Grímsson, Lei Gu, Dong Ren, and Tai-Ping Gao
Foss. Rec., 24, 445–453, https://doi.org/10.5194/fr-24-445-2022, https://doi.org/10.5194/fr-24-445-2022, 2022
Short summary
Short summary
We described the first xiphydriid wood wasp fossil, which extends the occurrence of Xiphydriidae into the mid-Cretaceous and adds to the known diversity of features in the family. In addition, the simplification of the wing venation and hypothesized host-plant affiliations of early xiphydriids are discussed based on the pollen of Cycadales preserved with the wasp.
Corentin Jouault, Arvid Aase, and André Nel
Foss. Rec., 24, 379–393, https://doi.org/10.5194/fr-24-379-2021, https://doi.org/10.5194/fr-24-379-2021, 2021
Short summary
Short summary
Here we describe two new genera of fossil sawfly belonging to the Xyelidae. The fossil record of the family during the Mesozoic and Cenozoic is analyzed, supporting the hypothesis that the Eocene biomes shape the current distribution of the Xyelidae. These discoveries were made possible thanks to the study of old specimens housed in institutional collections or donated by an American citizen.
Andrea Guerrero and Adán Pérez-García
Foss. Rec., 24, 357–377, https://doi.org/10.5194/fr-24-357-2021, https://doi.org/10.5194/fr-24-357-2021, 2021
Short summary
Short summary
Several British specimens corresponding to shells of small pleurosternid turtles (Lower Cretaceous) are analysed in detail here. Due to the scarce knowledge available to date about these specimens, their taxonomic status was doubtful. A detailed study through qualitative and quantitative approaches is performed. The results provide evidence of a significant range of shape variability because of the ontogeny. Thus, their attribution to juvenile individuals of Pleurosternon bullockii is justified.
Robin Kundrata, Alexander S. Prosvirov, Roger Long, and Gabriela Packova
Foss. Rec., 24, 347–355, https://doi.org/10.5194/fr-24-347-2021, https://doi.org/10.5194/fr-24-347-2021, 2021
Short summary
Short summary
Although the Mesozoic Era played an important role in the evolution and diversification of Elateridae, the Cretaceous click-beetle fauna remains very poorly known. Here we describe Cretopachyderes burmitinus gen. et sp. nov. based on a single specimen from the mid-Cretaceous Burmese amber. This species is remarkable for its extremely long posterior angles of pronotum, which is a unique character among fossil Elateridae.
Valentine Bouju, Simon Rosse-Guillevic, Marion Griffon, Błażej Bojarski, Jacek Szwedo, and Vincent Perrichot
Foss. Rec., 24, 339–346, https://doi.org/10.5194/fr-24-339-2021, https://doi.org/10.5194/fr-24-339-2021, 2021
Short summary
Short summary
An extinct species of fly is described from 16–23-million-year-old amber of Ethiopia. It is the first fossil of the fly family Mycetophilidae discovered from Africa. This discovery informs the evolutionary history of Afrotropical fungus gnats.
João Sousa and Octávio Mateus
Foss. Rec., 24, 287–294, https://doi.org/10.5194/fr-24-287-2021, https://doi.org/10.5194/fr-24-287-2021, 2021
Short summary
Short summary
In this work we sought to use modern research techniques to revisit a ichthyosaur specimen from Portugal, the most complete fin of our fossil record, and verify the validity of the specimen's historical identification. Through the use of phylogenetic analysis and anatomical comparisons with other specimens, we have assigned a new classification to the specimen and concluded it is the southernmost exemplar of the group.
Stephen J. Godfrey, Carolina S. Gutstein, and Donald J. Morgan III
Foss. Rec., 24, 275–285, https://doi.org/10.5194/fr-24-275-2021, https://doi.org/10.5194/fr-24-275-2021, 2021
Short summary
Short summary
A new species of dolphin is named on the basis of a partial skull. It was found on a riverbed in North Carolina, USA. During the Miocene it lived in a marine environment. It is most closely related to the Amazon river dolphin. During the Miocene and Pliocene epochs, relatives of the freshwater river dolphins were living in marine environments. More recently, these marine species became extinct, survived only by those species that successfully invaded South American riverine systems.
Xiao-Ting Xu, Wei-Yu-Dong Deng, Zhe-Kun Zhou, Torsten Wappler, and Tao Su
Foss. Rec., 24, 263–274, https://doi.org/10.5194/fr-24-263-2021, https://doi.org/10.5194/fr-24-263-2021, 2021
Short summary
Short summary
The Qinghai–Tibetan Plateau (QTP) played a crucial role in shaping the biodiversity in Asia during the Cenozoic, but the evolutionary history of biodiversity in this large region remains unclear. Here, we report a new fossil record of Fulgoridae from the middle Eocene Lunpola Basin, central QTP, which represents the earliest Fulgoridae fossil record in Asia and suggests a warm climate with relatively low elevation during the middle Eocene in central QTP.
Adán Pérez-García
Foss. Rec., 24, 247–262, https://doi.org/10.5194/fr-24-247-2021, https://doi.org/10.5194/fr-24-247-2021, 2021
Short summary
Short summary
The early Oligocene
Podocnemisfajumensis and the early Miocene
Podocnemisaegyptiaca are two podocnemidid pleurodiran turtles from northern Egypt, defined more than a century ago. Both species are confirmed as valid. They are attributed to two new genera, corresponding to the oldest defined for the African record of Erymnochelyini. Thus, the new combinations Shetwemys fajumensis and Apeshemys aegyptiaca are proposed.
Konstantina Agiadi, Efterpi Koskeridou, and Danae Thivaiou
Foss. Rec., 24, 233–246, https://doi.org/10.5194/fr-24-233-2021, https://doi.org/10.5194/fr-24-233-2021, 2021
Short summary
Short summary
Climate and connection between marine basins have formed the modern Mediterranean fish fauna. Here, we present new data for the early stages of the fish fauna, 20–23 million years ago, when the Mediterranean Sea was starting to take its actual shape, and we show its relationship to the fish faunas of the surrounding seas. Two new fish species are described: Ariosoma mesohellenica and Gnathophis elongatus.
Vitalii I. Alekseev and Andris Bukejs
Foss. Rec., 24, 223–231, https://doi.org/10.5194/fr-24-223-2021, https://doi.org/10.5194/fr-24-223-2021, 2021
Short summary
Short summary
A new micro-histerid species is described and illustrated from Eocene Baltic amber. As the first extinct member of the subfamily Abraeinae (Histeridae) and the smallest known fossil histerid specimen, this material was examined using a combination of light microscopy and X-ray micro-computed tomography (μCT). Internal features of the abdomen are well preserved, allowing us to study sclerotized parts of the aedeagus and illustrate these structures in detail.
Robin Kundrata, Matthew L. Gimmel, Gabriela Packova, Andris Bukejs, and Stephan M. Blank
Foss. Rec., 24, 141–149, https://doi.org/10.5194/fr-24-141-2021, https://doi.org/10.5194/fr-24-141-2021, 2021
Short summary
Short summary
Dascillidae are a species-poor beetle group with a scarce fossil record. Here, we used light microscopy and X-ray microtomography to describe Baltodascillus serraticornis gen. et sp. nov. based on a well-preserved specimen from Eocene Baltic amber. We tentatively place this species in the subfamily Karumiinae. This is the first representative of the Dascillidae formally described from Baltic amber and the first described fossil member of the subfamily Karumiinae.
Andrei A. Legalov
Foss. Rec., 24, 135–139, https://doi.org/10.5194/fr-24-135-2021, https://doi.org/10.5194/fr-24-135-2021, 2021
Short summary
Short summary
Palaeatalasis monrosi gen. at sp. nov. belonging to the subfamily Sagrinae (Chrysomelidae) is described from the Green River Formation (age 53.5–48.5 Ma). The new genus is similar to Atalasis Lacordaire, 1845 from Argentina. It also differs from the Eocene Eosagra Haupt, 1950 and the Paleocene Gallopsis Legalov, Kirejtshuk et Nel, 2019. It is the first record of the Sagrinae from North America and the fourth known species of the family Chrysomelidae from the Green River.
Wilfried Wichard and Christian Neumann
Foss. Rec., 24, 129–133, https://doi.org/10.5194/fr-24-129-2021, https://doi.org/10.5194/fr-24-129-2021, 2021
Short summary
Short summary
A new polycentropodid caddisfly species is described from Miocene Dominican amber. The family Polycentropodidae is therefore represented in the Dominican amber with two species belonging to the genus Cernotina: C. pulchra Wichard, 2007, and C. fossilinova sp. nov. The endemic C. danieli Flint & Sykora, 2004, is the only representative of the genus occurring on Hispaniola today and is similar to the two fossil species.
Andris Bukejs and Andrei A. Legalov
Foss. Rec., 24, 117–127, https://doi.org/10.5194/fr-24-117-2021, https://doi.org/10.5194/fr-24-117-2021, 2021
Short summary
Short summary
Baltocar sontagae sp. nov. and Pseudomesauletes lobanovi sp. nov. from the family Rhynchitidae are described from Eocene Baltic amber. It is the first record of Pseudomesauletes from Baltic amber. Keys to species of the genus Baltocar and to the Eocene species of the genus Pseudomesauletes are given. Assumed trophic relationships of the genus Baltocar with Cupressaceae and Pseudomesauletes lobanovi sp. nov. with Rosaceae are discussed.
Nasrollah Abbassi, Masoumeh Khoshyar, Spencer G. Lucas, and Farid Esmaeili
Foss. Rec., 24, 101–116, https://doi.org/10.5194/fr-24-101-2021, https://doi.org/10.5194/fr-24-101-2021, 2021
Short summary
Short summary
The Chehrabad area, NW Iran, is known as the historical site of Saltmen mine dated to the Achaemenid and Sassanid eras. We, however, discovered animal footprints in NW Chehrabad (ca. 3 km NW of the Saltmen mine) on a very large slab. These footprints belong to the Miocene age and include canid, felid and bird tracks as old as 10.7 Ma. The canid footprint record establishes the late Miocene presence of canids on the Iranian Plateau as part of the Eurasia-wide “Eucyon event”.
Alice Belluzzo and Olivier Lambert
Foss. Rec., 24, 77–92, https://doi.org/10.5194/fr-24-77-2021, https://doi.org/10.5194/fr-24-77-2021, 2021
Short summary
Short summary
Whereas true dolphins (Delphinidae) are the most diversified family of cetaceans today, their evolutionary history remains poorly known due to a relatively patchy fossil record. Based on a fossil skull discovered in early Pliocene (5 to 4.4 million years ago) marine sediments from Antwerp (Belgium), we describe here a new genus and species of small dolphin, Pliodelphis doelensis. This is the first delphinid species to be recorded from the early Pliocene in the North Sea.
Vitalii I. Alekseev and Andris Bukejs
Foss. Rec., 24, 93–99, https://doi.org/10.5194/fr-24-93-2021, https://doi.org/10.5194/fr-24-93-2021, 2021
Short summary
Short summary
Clown beetles (Histeridae) are insufficiently studied in fossil resins. The aim of the present research is to describe a new species of Bacaniini from Eocene Baltic amber. The specimen is studied using X-ray micro-computed tomography, imaged and compared with fossil and extant related beetles. A mixed sporophagous–predaceous diet in rotten wood of fallen and standing trees was assumed to be the ecological niche for the fossil species.
Germán M. Gasparini, Oscar F. Moreno-Mancilla, and José L. Cómbita
Foss. Rec., 24, 65–75, https://doi.org/10.5194/fr-24-65-2021, https://doi.org/10.5194/fr-24-65-2021, 2021
Rainer R. Schoch
Foss. Rec., 24, 49–64, https://doi.org/10.5194/fr-24-49-2021, https://doi.org/10.5194/fr-24-49-2021, 2021
Short summary
Short summary
The 296 million year old rocks of Odernheim (Germany) preserve numerous fossils of fishes and amphibians (temnospondyls) of Permian age. This site is exceptional for yielding two large temnospondyl predators: the 2 m long Sclerocephalus nobilis and 1.5 m long Glanochthon lellbachae. A revision of G. lellbachae reveals that it forms the most ancient relative of the genus Glanochthon, a gracile fish eater, and that the origin of this group can be traced back to the genus Sclerocephalus.
Thanit Nonsrirach, Sita Manitkoon, and Komsorn Lauprasert
Foss. Rec., 24, 33–47, https://doi.org/10.5194/fr-24-33-2021, https://doi.org/10.5194/fr-24-33-2021, 2021
Short summary
Short summary
Although thousands of vertebrate remains have been found in Thailand, few amphibian remains have been reported. Here, we present an overview on the Thai amphibian paleo-diversity. The Thai amphibian fossils show the most diverse Mesozoic amphibian record in Southeast Asia, and this agrees with the hypothesis of a large physical connection between the Indochina block and Laurussia during the Mesozoic era.
Vitalii I. Alekseev, Jerit Mitchell, Ryan C. McKellar, Mauricio Barbi, Hans C. E. Larsson, and Andris Bukejs
Foss. Rec., 24, 19–32, https://doi.org/10.5194/fr-24-19-2021, https://doi.org/10.5194/fr-24-19-2021, 2021
Short summary
Short summary
Two new fossil species of turtle beetles have been identified from inclusions in Baltic amber (approx. 41–38 million years old). These beetles are the first described representatives of the family from this amber type and the first known turtle beetles from Europe. The paper also contains a discussion about possible association of the fossil turtle beetles with orchids in the Eocene
amberiferous forestand remarks concerning fossil beetles of the group.
Dimitris S. Kostopoulos, Ayla Sevim Erol, Alper Yener Yavuz, and Serdar Mayda
Foss. Rec., 24, 9–18, https://doi.org/10.5194/fr-24-9-2021, https://doi.org/10.5194/fr-24-9-2021, 2021
Short summary
Short summary
Biodiversity at the primate-bearing Çorakyerler site, Turkey, dating to the upper Miocene, is high, including up to 10 distinct bovid taxa. In this work, we describe five new bovid crania of a new bovid genus and species, Gangraia anatolica. The new taxon is characterized by long, keelless, and transversally ridged, homonymously twisted horn cores, and it shows a particular mixture of caprine and alcelaphine cranial features that are similar to the Alcelaphini–Caprini–Hippotragini clade.
Andrei A. Legalov, Vitaliy Y. Nazarenko, and Evgeny E. Perkovsky
Foss. Rec., 24, 1–7, https://doi.org/10.5194/fr-24-1-2021, https://doi.org/10.5194/fr-24-1-2021, 2021
Short summary
Short summary
Glaesotropis rohdendorfi sp. nov. belongs to the subgenus Electranthribus, described from Eocene Rovno amber. The new species is similar to G. zherikhini from Baltic amber. It is the first described beetle from the Olevsk amber locality, the sixth amber species reported from the Zhytomyr region, the first record of the subgenus Electranthribus, and the third Anthribidae from Rovno amber. An aggregation of glaesacarid mites as a syninclusion with the fungus weevil is reported for the first time.
Andrei A. Legalov and Markus J. Poschmann
Foss. Rec., 23, 197–204, https://doi.org/10.5194/fr-23-197-2020, https://doi.org/10.5194/fr-23-197-2020, 2020
Short summary
Short summary
The new weevil Igneonasus rudolphi gen. et sp. nov. of the tribe Ceutorhynchini is described from the late Oligocene of Fossillagerstätte Enspel, Germany. The new genus is similar to the Recent genus Stenocarus and the largest representative of the supertribe Ceutorhynchitae. It is the first fossil Curculionidae species described from the paleolake Enspel. In this ancient ecosystem, weevils were at least sometimes an important food resource for the cyprinid fish Palaeorutilus enspelensis.
Chang-Fu Zhou, Jiahao Wang, and Ziheng Zhu
Foss. Rec., 23, 191–196, https://doi.org/10.5194/fr-23-191-2020, https://doi.org/10.5194/fr-23-191-2020, 2020
Short summary
Short summary
Filter-feeding ctenochasmatid pterosaurs flourished in the Jehol Biota. Here, a new wing skeleton of the ctenochasmatid Forfexopterus is described from the Early Cretaceous Jiufotang Formation in Jianchang, western Liaoning, China. Interestingly, it exhibits a skeletal maturity with co-ossified elements, but it is only about 75 % the size of the immature holotype, revealing a developmental variation of Forfexopterus.
Victoria M. Arbour, Derek Larson, Matthew Vavrek, Lisa Buckley, and David Evans
Foss. Rec., 23, 179–189, https://doi.org/10.5194/fr-23-179-2020, https://doi.org/10.5194/fr-23-179-2020, 2020
Short summary
Short summary
We describe the first dinosaur skeletal fossils from the Dunvegan Formation of British Columbia, collected near the Pine River in 1930. These are some of the oldest dinosaur body fossils from British Columbia and western Canada. We identify these bones as partial dorsal vertebrae and ribs from an ankylosaur; ankylosaur footprints are some of the most common fossils in this formation and in this region.
Andris Bukejs and Andrei A. Legalov
Foss. Rec., 23, 169–177, https://doi.org/10.5194/fr-23-169-2020, https://doi.org/10.5194/fr-23-169-2020, 2020
Irene Montañez-Rivera and Oliver Hampe
Foss. Rec., 23, 151–168, https://doi.org/10.5194/fr-23-151-2020, https://doi.org/10.5194/fr-23-151-2020, 2020
Short summary
Short summary
The locality of Groß Pampau in northern Germany is famous for its rich marine mammal assemblage of the Miocene age. A newly discovered ear bone of a fossil sperm whale is described here with morphological characters so far unknown from other sperm whales. It remains unclear at this point if it could belong to a sperm whale whose fragments were discovered in the same locality or to another, already-described taxon, of which the ear bones are still unknown.
Marine Fau, Loïc Villier, Timothy A. M. Ewin, and Andrew S. Gale
Foss. Rec., 23, 141–149, https://doi.org/10.5194/fr-23-141-2020, https://doi.org/10.5194/fr-23-141-2020, 2020
Short summary
Short summary
Forcipulatacea is one of the major clades of extant sea stars with 400 extant species described, but with fewer than 25 fossil species known. Thus, the identification of any new fossil representatives is significant. We reappraise Ophidiaster davidsoni from the Tithonian of Boulogne, France, which was assigned to another major extant group, and reassign it within a new forcipulatacean genus Psammaster gen. nov. A phylogenetic analysis does not place it within any existing forcipulatacean family.
David J. Cicimurri, Jun A. Ebersole, and George Martin
Foss. Rec., 23, 117–140, https://doi.org/10.5194/fr-23-117-2020, https://doi.org/10.5194/fr-23-117-2020, 2020
Short summary
Short summary
Mennerotodus is a genus of fossil shark that lived during the Paleogene Period, between 65 and 38 million years ago, and was previously known only from Asia and Europe. In this study, new species of Mennerotodus have been identified in the USA from Alabama (Mennerotodus mackayi) and South Carolina (Mennerotodus parmleyi). Mennerotodus mackayi is the oldest of the species, suggesting the genus originated in the Gulf Coastal Plain of the USA during the Paleocene Epoch (~ 65 million years ago).
Andris Bukejs, Jan Bezděk, Vitalii I. Alekseev, Kristaps Kairišs, and Ryan C. McKellar
Foss. Rec., 23, 105–115, https://doi.org/10.5194/fr-23-105-2020, https://doi.org/10.5194/fr-23-105-2020, 2020
Short summary
Short summary
A male of the extinct leaf-beetle species Calomicrus eocenicus embedded in Baltic amber is found and compared with an earlier known female. The beetle genitalia are illustrated in detail using X-ray microtomography. The male is smaller than female and has a modified last abdominal segment. The extinct species (about 40 million years old) possesses typical sexual characters which are similar to the characters of extant beetles within the group.
Walter G. Joyce and Yann Rollot
Foss. Rec., 23, 83–93, https://doi.org/10.5194/fr-23-83-2020, https://doi.org/10.5194/fr-23-83-2020, 2020
Short summary
Short summary
Peltochelys duchastelii is an enigmatic fossil turtle from the Early Cretaceous of Bernissart, Belgium. Here we provide an alternative interpretation of the morphology of this turtle, which suggests for the first time relationships with paracryptodires, a now extinct group of turtles known from coeval deposits throughout western Europe and North America.
Andris Bukejs, Jiří Háva, and Vitalii I. Alekseev
Foss. Rec., 23, 95–104, https://doi.org/10.5194/fr-23-95-2020, https://doi.org/10.5194/fr-23-95-2020, 2020
Short summary
Short summary
New fossil species of skin beetles (Dermestidae) from two bioinclusions in Eocene ambers (Baltic and Rovno) are described and compared with extinct and extant congeners. The affinity of the Rovno and Baltic amber varieties is briefly reviewed. The checklist of the described beetles (57 species) from Rovno amber is compiled and presented for the first time.
Andris Bukejs, Vitalii I. Alekseev, and Andrei A. Legalov
Foss. Rec., 23, 75–81, https://doi.org/10.5194/fr-23-75-2020, https://doi.org/10.5194/fr-23-75-2020, 2020
Short summary
Short summary
We describe a new species and genus of weevils, Baltacalles triumurbium, from the Eocene amber of the Sambia Peninsula (Kaliningrad Region, Russia). The new fossil represents the first Eocene representative of the group. In addition to the taxonomic work, the locally distinct deposits of Baltic amber in the Kaliningrad Region are listed, discussed, photographed and mapped. The importance of the possible exact labeling of the amber material is underlined.
Lu Chen, Dong Ren, and Olivier Béthoux
Foss. Rec., 23, 71–74, https://doi.org/10.5194/fr-23-71-2020, https://doi.org/10.5194/fr-23-71-2020, 2020
Francesco Parisi and Fabrizio Fanti
Foss. Rec., 22, 119–123, https://doi.org/10.5194/fr-22-119-2019, https://doi.org/10.5194/fr-22-119-2019, 2019
Short summary
Short summary
Only in recent years have new genera and species of the subfamily Silinae Mulsant, 1862 been described as inclusions in amber. However, no representative of the genus Silis Charpentier, 1825 had been described from Baltic amber, even if few specimens were already known at the generic level. Silis lombardii sp. nov. is entirely dark brown and shows (as usual for the genus) the two characteristic lobes in the sides of pronotum, elongated elytra, and a basal small tooth only on the anterior claws.
Vitalii I. Alekseev, Andris Bukejs, and Ryan C. McKellar
Foss. Rec., 22, 111–118, https://doi.org/10.5194/fr-22-111-2019, https://doi.org/10.5194/fr-22-111-2019, 2019
Short summary
Short summary
In this paper we describe a new fossil species of the silvanid flat bark beetle from Baltic amber. The new beetle species from European Eocene belongs to the genus living only in the New World now. Possible, the studied specimen is an adult beetle entrapped in resin shortly after moulting.
Nicole Klein, Antoine Verrière, Heitor Sartorelli, Tanja Wintrich, and Jörg Fröbisch
Foss. Rec., 22, 91–110, https://doi.org/10.5194/fr-22-91-2019, https://doi.org/10.5194/fr-22-91-2019, 2019
Max Wisshak and Liane Hüne
Foss. Rec., 22, 77–90, https://doi.org/10.5194/fr-22-77-2019, https://doi.org/10.5194/fr-22-77-2019, 2019
Short summary
Short summary
Here, we describe an enigmatic new microfossil that was found encrusting a belemnite from the Middle Jurassic of the Falaises des Vaches Noires in Normandy, France. The organism has produced a conspicuous attachment etching on the belemnite for better adhesion and this trace fossil is new to science as well. Based on morphological criteria and the capacity to bioerode, the new microproblematicum can best be compared to encrusting bryozoans and foraminiferans.
Vitalii I. Alekseev, Andris Bukejs, and Xavier Bellés
Foss. Rec., 22, 65–72, https://doi.org/10.5194/fr-22-65-2019, https://doi.org/10.5194/fr-22-65-2019, 2019
Short summary
Short summary
The current paper describes a new fossil genus of spider beetles from Baltic amber (Eocene, 34–55 million years old). This fossil resin can be found throughout the Baltic Sea coastal area in northern Europe (Kaliningrad region, Russia; Poland; Denmark; Sweden; Germany; and Lithuania). The examined fossil material is housed in the private collection of Christel and Hans Werner Hoffeins (Hamburg, Germany).
Jin Wang, Olivier Béthoux, Dong Ren, and Yingying Cui
Foss. Rec., 22, 73–76, https://doi.org/10.5194/fr-22-73-2019, https://doi.org/10.5194/fr-22-73-2019, 2019
Short summary
Short summary
In this paper we focus on an insect wing fragment from the rarely known Taiyuan Formation (Early Permian; China). It is the first discovery of an arthropod as well as being the first insect, but currently we think the combination characters that the new material exhibited make it difficult to assign it to any known insect group. This indicates that more data are needed in the future. Hopefully our current documentation will be useful for the potential fossil discovery in the Taiyuan Formation.
Chang-Fu Zhou, Wen-Hao Wu, and Márton Rabi
Foss. Rec., 22, 57–64, https://doi.org/10.5194/fr-22-57-2019, https://doi.org/10.5194/fr-22-57-2019, 2019
Short summary
Short summary
The Jehol Biota of northeastern China (western Liaoning and conjoint areas) is renowned for its exquisite preservation of plant, invertebrate and vertebrate fossils. Here, we report three new specimens of the freshwater sinemydid turtle Ordosemys liaoxiensis from Hengtongshan Formation of Meihekou City, Jilin Province, northeastern China. As the first Mesozoic turtle of Jilin Province, this record represents the first tetrapod to indicate the presence of the Jehol Biota in the region.
Wilfried Wichard and Christian Neumann
Foss. Rec., 22, 51–56, https://doi.org/10.5194/fr-22-51-2019, https://doi.org/10.5194/fr-22-51-2019, 2019
Short summary
Short summary
We describe a bizarre and extinct caddisfly species, Cretapsyche palpinova sp. nov., from mid-Cretaceous Burmese amber.
Andris Bukejs and Andrei A. Legalov
Foss. Rec., 22, 45–49, https://doi.org/10.5194/fr-22-45-2019, https://doi.org/10.5194/fr-22-45-2019, 2019
Short summary
Short summary
This paper describes a new genus and species of weevils from Baltic amber (Eocene, 55–34 million years old). This fossil resin can be found throughout the Baltic Sea coastal area in northern Europe (Kaliningrad region, Russia; Poland; Denmark; Sweden; Germany; and Lithuania). The new fossil weevil is more similar to extant American genera, but its host plants cannot be assumed. The new fossil genus is named in honour of Carsten Gröhn (Germany), an enthusiast and specialist in Baltic amber.
Volker Lohrmann, Michael Ohl, Peter Michalik, James P. Pitts, Laurent Jeanneau, and Vincent Perrichot
Foss. Rec., 22, 31–44, https://doi.org/10.5194/fr-22-31-2019, https://doi.org/10.5194/fr-22-31-2019, 2019
Short summary
Short summary
Here, we report three new fossil rhopalosomatid wasp specimens from Dominican and Mexican amber. Rhopalosoma hispaniola Lohrmann sp. nov. is described and documented from Dominican amber by two separate inclusions – one of each sex. An additional fossil female Rhopalosoma is described and documented from Mexican amber. The new fossils do not only represent the first fossil records of an extant genus of this peculiar family but also the first records of the family in Dominican and Mexican amber.
Andris Bukejs and Andrei A. Legalov
Foss. Rec., 22, 25–30, https://doi.org/10.5194/fr-22-25-2019, https://doi.org/10.5194/fr-22-25-2019, 2019
Short summary
Short summary
New entimine weevil, Arostropsis perkovskyi Bukejs and Legalov, sp. nov. from the tribe Naupactini of subfamily Entiminae of the family Curculionidae is described from Late Eocene Rovno amber (Ukraine). The new species is similar to Arostropsis groehni Yunakov et Kirejtshuk, 2011 from Baltic amber. Arostropsis perkovskyi is the second species of the genus Arostropsis. It is the first record of the tribe Naupactini from Rovno amber. Composition of weevil subfamilies in Rovno amber is discussed.
Gloria Arratia, Hans-Peter Schultze, and Helmut Tischlinger
Foss. Rec., 22, 1–23, https://doi.org/10.5194/fr-22-1-2019, https://doi.org/10.5194/fr-22-1-2019, 2019
Short summary
Short summary
The teleosts (e.g., herrings, trouts) comprise the largest group of living fishes today. The aim of the present study is to investigate and describe a new species of the primitive teleost Tharsis from the Late Jurassic. Tharsis is currently known by one species, Tharsis dubious, which is one of the most common fish in the Solnfohen limestone, Bavaria, Germany. A new species, Tharsis elleri, is described and assigned to the family Ascalaboidae within the new order Ascalaboidiformes.
Walter G. Joyce, Virginie S. Volpato, and Yann Rollot
Foss. Rec., 21, 301–310, https://doi.org/10.5194/fr-21-301-2018, https://doi.org/10.5194/fr-21-301-2018, 2018
Short summary
Short summary
Pig-nosed turtles are an enigmatic group of reptiles with an extensive fossil record across the globe. The group is known to have inhabited North America during the Eocene, about 55 to 40 million years ago, but information is still limited regarding the exact morphology of these turtles, as remains are few. Here we document the morphology of the only known skull of a North American pig-nosed turtle based on a fossil from the middle Eocene Washakie Formation of Sweetwater County, Wyoming, USA.
Cited articles
Alegret, L. and Thomas, E.: Upper Cretaceous and lower Paleogene benthic
foraminifera from northeastern Mexico, Micropaleontology, 47, 269–316,
2001.
Badaye, H.: Multistratigraphische Untersuchungen im Cenoman und Turon des
Lichtenberger Höhenzuges unter besonderer Berücksichtigung der
Kalkbrüche Baddeckenstedt und Groß-Elbe, Diploma thesis, Freie Univ.
Berlin, 117 pp., 1986.
Bąk, K.: Biostratigraphy of deep-water agglutinated Foraminifera in
Scaglia Rossa-type deposits of the Pieniny Klippen Belt, Carpathians,
Poland, in: Proceedings of
the Fifth International Workshop on Agglutinated Foraminifera, edited by: Hart, M. B., Kaminski, M. A., and Smart, C. W., Grzybowski
Found. Spec. Publ., 7, 15–41, 2000.
Bąk, K.: Deep-water facies succession around the Cenomanian-Turonian
boundary in the Outer Carpathian basin: Sedimentary, biotic and chemical
records in the Silesian Nappe, Poland, Palaeogeogr.
Palaeocl., 248, 255–290, 2007.
Bąk, K., Bąk, M., Geroch, S., and Manecki, M.: Biostratigraphy and
paleoenvironmental analysis of benthic foraminifera and radiolarians in
Paleogene variegated shales in the Skole unit, Polish Flysch Carpathians,
Ann. Soc. Geol. Pol., 67, 135–154, 1997.
Barnard, T. and Banner, F. T.: Arenaceous Foraminifera from the Upper
Cretaceous of England, Q. J. Geol. Soc., 109, 173–216, 1953.
Bartenstein, H.: Taxonomische Bemerkungen zu den Ammobaculites, Haplophragmium, Lituola und verwandten Gattungen, Senckenbergiana, 33, 313–342, 1952.
Berggren, W. A. and Kaminski, M. A.: Abyssal Agglutinates: Back to Basics,
in:
Paleoecology, Biostratigraphy, Paleoceanography and Taxonomy of Agglutinated
Foraminifera, edited by: Hemleben, C., Kaminski, M. A., Kuhnt, W., and Scott, D. B., NATO ASI Series C327, Kluwer Acad. Pub., 53–76, 1990.
Berry, E. W.: The smaller foraminifera of the middle Lobitos shales of northwestern
Peru, Ecl. Geol. Helvetiae, 21, 390–405, 1928.
Berthelin, M.: Mémoire sur les foraminifères fossiles de l'étage
Albien de Montcley (Doubs), Mém. Soc. Géol. France, 3éme
Sér, 1, 85 pp., 1880.
Blumenberg, M. and Wiese, F.: Imbalanced nutrients as triggers for black
shale formation in a shallow shelf setting during the OAE 2 (Wunstorf,
Germany), Biogeosciences, 9, 4139–4153, https://doi.org/10.5194/bg-9-4139-2012,
2012.
Bornemann, A., Erbacher, J., Heldt, M., Kollaske, T., Wilmsen, M.,
Lübke, N., Huck, S., Vollmar, N. M., and Wonik, T.: The
Albian–Cenomanian transition and Oceanic Anoxic Event 1d – an example from
the Boreal Realm, Sedimentology, 64, 44–65, https://doi.org/10.1111/sed.12347,
2017.
Brady, H. B.: On Saccammina Carteri, a new Foraminifer from the Carboniferous limestone of
Northumberland, Ann. Mag. Natur. Hist. Ser., 4, 177–184, 1871.
Brady, H. B.: Notes on some of the reticularian Rhizopoda of the
“CHALLENGER” Expedition; Part 1. On new or little known Arenaceous types,
Q. J. Micropal. Sci., 19, 20–67, 1879.
Brady, H. B.: Report on the Foraminifera dredged by H. M. S. Challenger during
the years 1873–1876, London, Rep. Sci. Res. Challenger Zool., 9, 814 pp.,
1884.
Brotzen, F.: Foraminifera aus dem schwedischen untersten Senon von Eriksdal
in Schonen, Sverige Geol. Unders. Ser. C, 396, 1–206, 1936.
Bubík, M.: Cretaceous to Paleogene agglutinated foraminifera of the
Bílé Karpaty unit (West Carpathians, Czech Republic), in: Proc. Fourth Internat. Worksh.
agglt. Foram., edited by: Kaminski,
M. A., Geroch, S., and Gasinski, M. A., Grzybowski Found. Spec. Publ., Ljubljana, 3, 71–116, 1995.
Bubík, M.: Remarks on the quantitative analysis of deep-sea
agglutinated foraminiferal taphocoenoses with special attention to tubular
astrorhizids, Micropaleontology, 65, 63–74, 2019.
Carsey, D. O.: Foraminifera of the Cretaceous of central Texas, Univ. Texas
Bull., 2612, 56 pp., 1926.
Carter, D. J. and Hart, M. B.: Aspects of mid-Cretaceous stratigraphical
micropalaeontology, Bull. Brit. Mus. Natur. Hist., 29, 135 pp., 1977.
Cetean, C. G., Bălc, R., Kaminski, M. A., and Filipescu, S.: Integrated
biostratigraphy and palaeoenvironments of an upper Santonian–upper
Campanian succession from the southern part of the Eastern Carpathians,
Romania, Cret. Res., 32, 575–590,
https://doi.org/10.1016/j.cretres.2010.11.001, 2011.
Chapman, F.: Microzoa from the Phosphatic Chalk of Taplow, Quart. J. Geol. Soc., 48, 514–518, 1892.
Charnock, M. A. and Jones, R. W.: Agglutinated foraminifera from the
Paleogene of the North Sea, in: Paleoecology, biostratigraphy, paleoceanography and
taxonomy of agglutinated foraminifera, edited by: Hemleben, C., Kaminski, M. A., Kuhnt, W., and
Scott, D. B., NATO ASI Ser. C327, Kluwer Acad.
Publ., Tübingen, 139–244, 1990.
Coccioni, R., Galeotti, S., and Gravili, M.: Latest Albian–earliest Turonian
deep-water agglutinated foraminifera in the Bottaccione section (Gubbio,
Italy), Biostratigraphic and palaeoecologic implications, Rev. Esp.
Paleontl., 10, 135–152, 1995.
Cushman, J. A.: Textularia and related forms from the Cretaceous, Cont. Cushman Lab.
Foram. Res., 8, 86–96, 1932.
Cushman, J. A.: The generic position of “Cornuspira cretacea Reuss”, Cont. Cushman. Lab.
Foram. Res., 10, 44–47, 1934.
Cushman, J. A.: New genera and species of the families Verneuilinidae and
Valvulinidae and of the subfamily Virgulininae, Cushman Lab. For. Res.
Spec. Pub., 6, 1–71, 1936.
Cushman, J. A.: A monograph of the foraminiferal family Verneuilinidae,
Cushman Lab. Foram. Res. Spec. Publ., 8, 1–210, 1937.
Cushman, J. A. and Jarvis, P. W.: Cretaceous foraminifera from Trinidad,
Cont. Cushman Lab. Foram. Res., 4, 85–103, 1928.
Cushman, J. A. and Renz, H. H.: The foraminiferal fauna of the Lizard
Springs formation of Trinidad, British West Indies, Cushman Lab. Foram. Res.
Spec. Publ., 18, 1–48, 1946.
Deeke, W.: Die Foraminiferenfauna der Zone des Stephanoceras humphriesianum im Unter-Elsass, Abh. Geol.
Spez.-Kt. Els.-Lothr., 4, 1–68, 1884.
De Montfort, P. D.: Conchyliologie systématique et classification
méthodique des coquilles, Vol. 1, Schoell, Paris, 409 pp., 1808.
De Rijk, S., Jorissen, F. J., Rohling, E. J., and Troelstra, S. R.: Organic
flux control on bathymetric zonation of Mediterranean benthic foraminifera,
Mar. Micropaleontol., 40, 151–166, 2000.
d'Orbigny, A.: Paléontologie française: Description zoologique et
géologique de tous les animaux mollusques et rayonnés fossiles de
France, Terrains crétacés. mollusques céphalopodes, Cosson
Paris, 696 pp., 1840
d'Orbigny, A.: Die fossilien Foraminiferen des tertiären Beckens von
Wien, entdeckt von seiner Excellenz Ritter Joseph von Hauer, Gide et Comp.
Paris, 412 pp., 1846.
d'Orbigny, A.: Prodrome de paléontologie stratigraphique universelle des
animaux mollusques et rayonnés faisant suite au cours
élémentaire de paléontologie et de géologie
stratigraphiques, Masson Paris, 1, 394 pp., 2, 427 pp., 3, 389 pp.,
1850–1852.
Dylążanka, M.: Warstwy inoceramowe z łomu w Szymbarku koło
Gorlic. Roc. Pol. Tow. Geol., 1, 36–80, 1923.
Earland, A.: Foraminifera, Part 2. South Georgia, Disc. Rep., 7, 29–138,
1933.
Erbacher, J., Mutterlose, J., Wilmsen, M., and Wonik, T.: The Wunstorf
Drilling Project: coring a global stratigraphic reference section of the
Oceanic Anoxic Event 2, Sci. Drill., 4, 19–21, 2007.
Erbacher, J., Bornemann, A., Petrizzo, M. R., and Huck, S.: Chemostratigraphy
and stratigraphic distribution of keeled planktonic foraminifera in the
Cenomanian of the North German Basin, Z. Dt. Ges. Geowiss., 2, 1–13,
https://doi.org/10.1127/zdgg/2020/0211, 2020.
Ernst, G. and Rehfeld, U.: Transgressive development in the Early Cenomanian
of the Salzgitter area (northern Germany) recorded by sea level controlled
eco- and litho-events, Freiberger Forsch.-H., 468, 79–107, 1997.
Ernst, G. and Rehfeld, U.: Cenomanian-Turonian of Baddeckenstedt, in:
Key localities of the Northwest European Cretaceous, Mutterlose, edited by: J., Bornemann, A., Rauer, S., Spaeth, C., and Wood, C. J., Bochumer Geol.
Geotechn. Arb., 48, 91–94, 1998.
Ernst, G. and Wood, C. J.: Die tiefere Oberkreide des subherzynen
Niedersachsens, Terra Nostra, 5, 41–84, 1995.
Ernst, G. and Wood, C. J.: Söhlde quarries, in: Cretaceous Depositional Environments of NW Germany, edited by: Mutterlose, J., Wippich, M. G. E., Geisen, M., and Geisen, M., Bochumer Geol. Geotechn. Arb., 46, 55–61, 1997.
Ernst, G., Schmid, F., Seibertz, E., and Wood, C.: Event-Stratigraphie im
Cenoman und Turon von NW-Deutschland, Zitteliana, 10, 531–554, 1983.
Ernst, G., Niebuhr, B., Wiese, F., and Wilmsen, M.: Facies development, basin
dynamics, event correlation and sedimentary cycles in the Upper Cretaceous
of selected areas of Germany and Spain, in: Global and regional controls on biogenic sedimentation,
Part II, edited by: Reitner, J., Neuweiler, F., and
Gunkel, F., Cretaceous sedimentation, Göttinger Arb. zur Geol.
und Paläont., 3, 87–100, 1996.
Ernst, G., Wood, C. J., and Rehfeld, U.: Cenomanian–Turonian of Söhlde,
in: Key Localities of the Northwest European Cretaceous, Mutterlose, edited by: J., Bornemann, A., Rauer, S., Spaeth, C., and Wood, C. J., Bochumer Geol.
Geotechn. Arb., 48, 102–120, 1998.
Fenner, J., Bruns, A., Cepek, P., Köthe, A., Owen, H. G., Prauss, M.,
Riegel, W., Thies, A., Tyszka, J., Weiß, W., and Wiedmann, J.:
Palaeontological results from the Boreal Albian (Cores Kirchrode I and II),
biostratigraphy, palaeoenvironment and cycle analysis, in: Global and regional controls on
biogenic sedimentation, edited by: Reitner, J.,
Neuweiler, F., and Gunkel, F., Göttinger Arb. Geol. Paläont., 3, 5–12,
1996.
Fisher, R. A., Corbet, A. S., and Williams, C. B.: The relation between the
number of species and the number of individuals in a random sample of an
animal population, J. Ani. Eco., 12, 42–58, 1943.
Franke, A.: Die Foraminiferen der Oberen Kreide Nord-und Mitteldeutschlands,
Abh. Preuß. Geol. Landesanst., 111, 1–207, 1928.
Frentzen, K.: Die agglutinierenden Foraminiferen der Birmensdorfer Schichten
(Transversarius-Zone in Schwammfazies) des Gebietes um Blumberg in Baden, Paläont. Z.,
23, 317–343, 1944.
Frenzel, P.: Die benthischen Foraminiferen der Rügener Schreibkreide
(Unter-Maastricht, NE-Deutschland), Neue Pal. Abh., 3, 361 pp., 2000.
Frieg, C.: Neue Ergebnisse zur Systematik sandschaliger Foraminiferen im
Cenoman des südwestlichen Münsterlandes, Paläont. Z., 54,
225–240, 1980.
Frieg, C.: Über das Auftreten und den Kammerbau der Foraminifere
Pseudotextulariella cretosa (CUSHMAN) in Nordwestdeutschland, Geol. Jb., 113, 359–371, 1989.
Frieg, C. and Kemper, E.: Mikropaläontologische Gliederung und
Abgrenzung von Ober-Alb und Unter-Cenoman in Nordwestdeutschland, Geol. J.,
113, 73–193, 1989.
Frieg, C. and Price, R. J.: The subgeneric classification of
Arenobulimina, in: Aspects of Micropalaeontology, edited by: Banner, F. T. and Lord, A. R., George Allen and Unwin, 42–80, 1982.
Fuchs, W.: Eine alpine Foraminiferenfauna des tieferen Mittel-Barreme aus
den Drusbergschichten vom Ranzenberg bei Hohenems in Vorarlberg
(Österreich), Abh. Geol. Bundesanst., 27, 1–49, 1971.
Gale, A. and Christensen, W. K.: Occurrence of the belemnite
Cenomanian of SE France and its significance, Bull. Geol. Soc. Denmark, 43,
68–77, 1996.
Gale, A., Kennedy, W., Burnett, J., Caron, M., and Kidd, B.: The Late Albian
to Early Cenomanian succession at Mont Risou near Rosans (Drôme, SE
France): an integrated study (ammonites, inoceramids, planktonic
foraminifera, nannofossils, oxygen and carbon isotopes), Cret. Res., 17,
515–606, https//https://doi.org/10.1006/cres.1996.0032, 1996.
Gawor-Biedowa, E.: The genus Arenobulimina Cushman from the Upper Albian and Cenomanian
of the Polish lowlands, Ann. Soc. Geol. Pol., 39, 73–102, 1969.
Gawor-Biedowa, E.: The Albian, Cenomanian and Turonian foraminifers of
Poland and their stratigraphic importance, Acta Palaeont. Pol., 17,
3–183, 1972.
Geroch, S. and Kaminski, M. A.: An emendation of some Cretaceous species of
“Reophax” (Foraminiferida) from northwest Europe and Poland, Proc. Fourth Internat.
Worksh. agglut. Foram. Grzybowski Found., 3, 117–122, 1995.
Geroch, V. S. and Nowak, W.: Proposal of zonation for the Late
Tithonian–Late Eocene, based upon arenaceous foraminifera from the Outer
Carpathians, Poland, Benthos, 83, 225–239, 1984.
Grabert, B.: Phylogenetische Untersuchungen an Gaudryina und Spiroplectinata (Foram.), Abh.
Senckenberg Naturforsch. Ges., 498, 1–71, 1959.
Gradstein, F., Kaminski, M. A., and Agterberg, F.: Biostratigraphy and
paleoceanography of the Cretaceous seaway between Norway and Greenland.
Earth-Sci. Rev., 46, 27–98, https://doi.org/10.1016/S0012-8252(99)00018-5,
1999.
Gradstein, F., Ogg, J. G., Schmitz, M., and Ogg, G.: Geologic Time Scale 2020,
2nd Edn., Elsevier, 1300 pp., 2020.
Gradstein, F. M. and Kaminski, M. A.: Taxonomy and biostratigraphy of new
and emended species of Cenozoic deep-water agglutinated foraminifera from
the Labrador and North Seas, Micropaleontology, 35, 75–92, 1989.
Grzybowski, J.: Otwornice czerwonych ilow z Wadowic, Rozprawy Wydzialu
Matematyczno-Przyrodniczego, Akad. Umiej. Krakowie, serya 2, 30, 261–308,
1896.
Grzybowski, J.: Otwornice pokladow naftonosnych okolicy Krosna, Rozprawy
Wydzialu Matematyczno-Przyrodniczego, Akad. Umiej. Krakowie, serya 2, 33,
257–305, 1898.
Grzybowski, J.: Otwornice warstw inoceramowych okolicy Gorlic, Rozprawy
Wydzialu Matematyczno-Przyrodniczego, Akad. Umiej. Krakowie, 41, 201–286,
1901.
Haig, D. W. and Lynch, D. A.: A late early Albian marine transgressive pulse
over northeastern Australia, precursor to epeiric basin anoxia:
Foraminiferal evidence, Mar. Micropaleontol., 22, 331–362, 1993.
Hammer, Ø., Harper, D. A. T., and Ryan, P. D.: PAST: Paleontological
Statistics Software Package for Education and Data Analysis, Pal. Electro.,
4, 1–9, 2001.
Hanzlíková, E.: Carpathian Upper Cretaceous foraminifera from
Moravia (Turonian–Maastrichtian), Roz. Ústr. úst. Geol., 39,
5–160, 1972.
Haq, B. U.: Cretaceous eustasy revisited, Glob. Planet. Change, 113,
44–58, https://doi.org/10.1016/j.gloplacha.2013.12.007, 2014.
Haq, B. U., Hardenbol, J. A. N., and Vail, P. R.: Chronology of fluctuating
sea levels since the Triassic, Science, 235, 1156–1167, 1987.
Hart, M. B., Fogerty, T., and Smart, C. W.: Foraminifera of the Gault Clay
Formation: an update, Proc. Geol. Assoc., 131, 386–396,
https://doi.org/10.1016/j.pgeola.2019.10.003, 2020.
Harloff, J. and Mackensen, A.: Recent benthic foraminiferal associations and
ecology of the Scotia Sea and Argentine Basin, Mar. Micropaleontol., 31,
1–29, https://doi.org/10.1016/S0377-8398(96)00059-X, 1997.
Hemleben, C. and Troester, J.: Campanian–Maastrichtian deep-water
foraminifers from Hole 543A, Deep Sea Drilling Project, Initial Rep, Deep
Sea Drill. Proj. A, 78, 509–532, 1984.
Hercogová, J. and Kriz, J.: New Hemisphaerammininae (Foraminifera) from
the Bohemian Cretaceous basin (Cenomanian), Věst. Ústr. úst.
Geol., 58, 205–215, 1983.
Hetzel, A., März, C., Vogt, C., and Brumsack, H.-J.: Geochemical
environment of Cenomanian–Turonian black shale deposition at Wunstorf
(northern Germany), Cret. Res., 32, 480–494,
https://doi.org/10.1016/j.cretres.2011.03.004, 2011.
Hiss, M.: Kreide, in: Geologischer Dienst Nordrhein-Westfalen,
Geologie im Münsterland, Landesamt NRW, 41–63, 1995.
Hiss, M., Kaplan, U. and Wilmsen, M.: Herbram-Formation, in: Lithostratigraphie der norddeutschen Oberkreide, edited by: Niebuhr, B.,
Hiss, M., Kaplan, U., Tröger, K.-A., Voigt, S., Voigt, T., Wiese, F., and
Wilmsen, M., Schrift.-R.
Dt. Ges. Geowiss., 55, 30–32, 2007a.
Hiss, M., Kaplan, U., and Wilmsen, M.: Brochterbeck-Formation, in: Lithostratigraphie der norddeutschen Oberkreide, edited by: Niebuhr,
B., Hiss, M., Kaplan, U., Tröger, K.-A., Voigt, S., Voigt, T., Wiese, F.,
and Wilmsen, M.,
Schrift.-R. Dt. Ges. Geowiss., 55, 34–35, 2007b.
Hiss, M., Kaplan, U., and Wiese, F.: Hesseltal-Formation, in: Lithostratigraphie der norddeutschen Oberkreide, edited by: Niebuhr, B.,
Hiss, M., Kaplan, U., Tröger, K.-A., Voigt, S., Voigt, T., Wiese, F., and
Wilmsen, M., Schrift.-R.
Dt. Ges. Geowiss., 55, 37–38, 2007c.
Holbourn, A. E. and Kaminski, M. A.: Lower Cretaceous deep-water benthic
foraminifera of the Indian Ocean: a synthesis of DSDP & ODP material,
Grzybowski Found. Spec. Publ., 4, 172 pp., 1997.
Huss, F.: Otwornice aglutynujace serii podslaskiej jednostki roponosnej
Weglowki (Polskie Karpaty Fliszowe), Agglutinated foraminifera of the
oil-bearing subsilesian series in Weglowka (Polish Flysch Carpathians),
Prace Geol., Polska Akad. Nauk, 34, 7–76, 1966.
Janetschke, N., Niebuhr, B., and Wilmsen, M.: Inter-regional
sequence-stratigraphical synthesis of the Plänerkalk, Elbtal and
Danubian Cretaceous groups (Germany): Cenomanian–Turonian correlations
around the Mid-European Island, Cret. Res. ,56, 530–549,
https://doi.org/10.1016/j.cretres.2015.04.007, 2015.
Jarvis, I., Gale, A. S., Jenkyns, H. C., and Pearce, M. A.: Secular variation
in Late Cretaceous carbon isotopes: a new δ13C carbonate reference
curve for the Cenomanian–Campanian (99.6–70.6 Ma), Geol. Mag., 143,
561–608, https://doi.org/10.1017/S0016756806002421, 2006
Jenkyns, H.: Cretaceous anoxic events: from continents to oceans, J. Geol.
Soc., 137, 171–188, https://doi.org/10.1144/gsjgs.137.2.0171, 1980.
Jones, R. W. and Charnock, M. A.: “Morphogroups” of agglutinated
foraminifera, Their life positions and feeding habits and potential
applicability in (paleo)ecological studies, Rev. Paleeobiol., 4,
311–320, 1985.
Jones, T. R. and Parker, W. K.: On the Rhizopodal fauna of the Mediterranean
compared with that of the Italian and some other Tertiary deposits, Q.
J. Geol. Soc., 16, 292–307, 1860.
Jorissen, J. J., Stiger, H. C., and Widmark, J. G. V.: A conceptual model
explaining benthic foraminiferal microhabitats, Mar. Micropaleontol., 26,
3–15, 1995.
Józsa, Š.: Field stop 1: Vršatec – Upper Cretaceous microfauna
of the oceanic red beds, in: Microfauna and biostratigraphy of the Mesozoic and
Cenozoic formations of the Western Carpathians: Guidebook of the IWAF-10
field trip to Middle Valley and Malé Karpaty Mts, edited by: Soták, J., Hudáčková, N., and
Michalík, J., Bratislava, Earth Sci.
Inst., Slovak Acad. Sci., 41–47, 2017a.
Józsa, Š.: Deep water agglutinated foraminifera from the
Jurassic/Cretaceous boundary and paleoenvironmental settings of the Maiolica
type facies from the Czorstyn ridge (Pieniny Klippen Belt, Western
Carpathians), Riv. Italiana Pal Strat., 123, 387–398, 2017b.
Józsa, Š.: Early Tithonian deep-water colonization by benthic
foraminifera in the Magura Basin (Pieniny Klippen Belt, Western
Carpathians): a clue to the origins of deep-water foraminifera, Riv.
Italiana Pal. Strat., 125, 401–420, 2019.
Józsa, Š., Schlögl, J., Meister, Ch., and Golej, M.: Lower
Sinemurian – upper Pliensbachian smaller agglutinated foraminiferal events
from the eastern part of the Pieniny Klippen Belt (Transcarpathian Ukraine,
Western Carpathians), Micropaleontology, 64, 493–505, 2018.
Kaminski, M. A.: The year 2010 classification of the agglutinated foraminifera, in: Advances in agglutinated foraminiferal research: The Ninth International Workshop on Agglutinated Foraminifera, IWAF-9, edited by: Alegret, L. and Kaminski, M. A., Micropaleontology, 60, 89–108, 2014.
Kaminski, M. A. and Geroch, S.: A revision of foraminiferal species in the
Grzybowski Collection, in: The Origins of Applied Micropaleontology: The School of Jozef
Grzybowski, edited by: Kaminski, M. A., Geroch, S., and Kaminski, D., Grzybowski Found. Spec. Publ., 1, 293–323, 1993.
Kaminski, M. A. and Gradstein, F. M.: Atlas of Paleogene cosmopolitan
deep-water agglutinated foraminifera, Grzybowski Found. Spec. Publ., 10,
1–547, 2005.
Kaminski, M. A., Gradstein, F., and Berggren, W.: Flysch-type agglutinated
foraminiferal assemblages from Trinidad: taxonomy, stratigraphy and
paleobathymetry, Abh. geol. Bundesanst., 41, 155–227, 1988.
Kaminski, M. A., Boersma, E., Tyszka, J., and Holbourn, A.: Response of
deep-water agglutinated foraminifera to dysoxic conditions in the California
Borderland basins, in: Proc. Fourth Internat. Worksh. agglut. Foram., edited by: Kaminski, M. A., Geroch, S., and Gasinski, M. A., Grzybowski Found.
Spec. Publ., 3, 131–140, 1995.
Kaminski, M. A., Cetean, C. G., and Neagu, T.: Rectogerochammina eugubina nov. gen., nov. sp., a new
agglutinated foraminifer from the Upper Cretaceous of Gubbio, Italy, Rev.
Micropaléont., 53, 121–124, 2010.
Kaminski, M. A., Cetean, C. G., Balc, R., and Coccioni, R.: Upper Cretaceous
deep-water agglutinated foraminifera from the Contessa Highway Section,
Umbria-Marche basin, Italy: taxonomy and biostratigraphy, in: Proc. Eighth Internat. Worksh. agglut. Foram., edited by: Kaminski, M.
A. and Filipescu, S.,
Grzybwoski Found. Spec. Publ., 16, 71–106, 2011.
Kaminski, M. A., Alegret, L., Hikmahtiar, S., and Waśkowska, A.: The
Paleocene of IODP Site U1511, Tasman Sea: A lagerstatte deposit for
deep-water agglutinated foraminifera, Micropaleontology, 67, 341–364,
2021.
Kennedy, W. J., Gale, A., Lees, J., and Caron, M.: The global boundary
stratotype section and point (GSSP) for the base of the Cenomanian Stage,
Mont Risou, Hautes-Alpes, France, Episodes, 27, 21–32, 2004.
Krasheninnikov, V.: Cretaceous benthonic foraminifera, Leg 20, Deep Sea
Drilling Project, Initial Rep. Deep Sea Drill. Proj., 20, 205–221, 1973.
Krasheninnikov, V.: Upper Cretaceous benthonic agglutinated foraminifera,
Leg 27 of the Deep Sea Drilling Project, Initial Rep. Deep Sea Drill. Proj.,
27, 631–661, 1974.
Kuhnt, W.: Agglutinated foraminifera of western Mediterranean Upper
Cretaceous pelagic limestones (Umbrian Apennines, Italy, and Betic
Cordillera, Southern Spain), Micropaleontology, 36, 297–330, 1990.
Kuhnt, W. and Kaminski, M. A.: Paleoecology of Late Cretaceous to Paleocene
deep-water agglutinated foraminifera from the North Atlantic and Western
Tethys, in:
Paleoecology, biostratigraphy, paleoceanography and taxonomy of agglutinated
foraminifera, edited by: Hemleben, C., Kaminski, M. A., Kuhnt, W., and Scott, D. B., NATO ASI Ser. C327, Kluwer Acad. Press, 433–506, 1990.
Kuhnt, W. and Kaminski, M. A.: Cenomanian to lower Eocene deep-water
agglutinated foraminifera from the Zumaya section, northern Spain, Ann. Soc.
Geol. Pol., 67, 257–270, 1997.
Kuhnt, W., Kaminski, M. A., and Moullade, M.: Late Cretaceous deep-water
agglutinated foraminiferal assemblages from the North Atlantic and its
marginal seas, Geol. Rundsch., 78, 1121–1140, 1989.
Kuhnt, W., Geroch, S., Kaminski, M. A., Moullade, M., and Neagu, T.: Upper
Cretaceous abyssal claystones in the North Atlantic and Western Tethys:
current status of biostratigraphical correlation using agglutinated
foraminifers and palaeoceanographic events, Cret. Res., 13,
467–478, https://doi.org/10.1016/0195-6671(92)90011-E, 1992.
Leary, P. N.: The Late Cenomanian Anoxic Event; Implications for
foraminiferal evolution, PhD thesis, Plymouth Univ., 325 pp., 1987.
Linnert, C., Mutterlose, J., and Erbacher, J.: Calcareous nannofossils of the
Cenomanian/Turonian boundary interval from the Boreal Realm (Wunstorf,
northwest Germany), Mar. Micropaleontol., 74, 38–58, 2010.
Loeblich, A. R. and Tappan, H.: Eleven new genera of foraminifera, Bull.
U.S. Nat. Museum, 215, 223–232, 1957.
Loeblich, A. R. and Tappan, H.: A revision of mid-Cretaceous textularian
foraminifers from Texas, J. Micropalaeontol., 1, 55–69, 1982.
Loeblich, A. R. and Tappan, H.: Foraminiferal genera and their
classification, Springer, New York, 212 pp., 1987.
Magniez-Jannin, F.: Les foraminifères de l'Albien de l'Aube:
paléontologie, stratigraphie, écologie, Cahiers Paléont., 416
pp., 1975.
Majzon, L.: Adatok egyes Kárpátaljai flis-rétegekhez,
tekintettel a Globotruncanákra (Beitrage zur Kenntniss einiger Flysch
Schichten des Karpaten-Vorlandes mit Rücksicht auf die Globotruncanen),
A magyar Királyi Földtani Intézet, Évkönyve, Ann.
Hungarian Geol. Inst., 37, 1–90, 1–177, 1943.
Maslakova, N.: Stratigrafiya i fauna melkikh foraminifer paleogenovykh
otlozhenii Vostochnykh Karpat, Mater. Biostrat. zapad. oblastii Ukrain. SSR, 5,
5–132, 1955.
Melinte-Dobrinescu, M. C., Roban, R.-D., and Stoica, M.: Palaeoenvironmental
changes across the Albian-Cenomanian boundary interval of the Eastern
Carpathians, Cret. Res., 54, 68–85,
https://doi.org/10.1016/j.cretres.2014.10.010, 2015.
Meyer, T.: Biostratigraphische und sedimentologische Untersuchungen in der
Plänerfazies des Cenoman von Nordwestdeutschland, Mitt. Geol. Inst.,
Univ. Hannover, 30, 1–114 1990.
Mjatliuk, E. V.: K vprosu o foraminiferakh c kremnevnym skeletom (On the
question of foraminifera with a siliceous skeleton), Vop. Mikropaleont., 10,
255–269, 1966.
Morozova, V.: Foraminiferi nizhnemelovikh otlozhenii rayona g. sochi
(Yugozapadnoi Kavkaz), Moscov. Obshch. Ispyt. Prirodi, Otdel Geol. Byull,
23, 23–43, 1948.
Murray, J. W., Alve, E., and Jones, B. W.: A new look at modern agglutinated
benthic foraminiferal morphogroups: their value in palaeoecological
interpretation, Palaeogeogr. Palaeocl., 309, 229–241,
https://doi.org/10.1016/j.palaeo.2011.06.006, 2011.
Neagu, T.: Studiul foraminiferelor aglutinante din argilele Cretacic
superiorare de pe Valea Sadovei (Cimpulung–Moldovenesc) si bazinul superior
al vaii Buzauliu, Stud. Cerc. Geol., Acad. Rep. Pop. Rom-, Sect. Geol.
Geogr. Inst. Geol. Geogr., 7, 45–81, 1962.
Neagu, T.: Micropaleontological and stratigraphical study of the Upper
Cretaceous deposits between the upper valleys of the Buzau and Riul Negru
Rivers (Eastern Carpathians), Bucarest, Mem. Inst. Geol., 12, 7–109, 1970.
Neagu, T.: Gerochammina n.g. and related genera from the Upper Cretaceous flysch-type
benthic foraminiferal fauna, Eastern Carpathians – Romania, in: Paleoecology,
biostratigraphy, paleoceanography and taxonomy of agglutinated foraminifera, edited by: Hemleben,
C., Kaminski, M. A., Kuhnt, W., and Scott, D. B.,
NATO ASI Ser. C327, Kluwer Acad. Press, 245–265, 1990.
Niebuhr, B., Baldschuhn, R., Ernst, G., Walaszczyk, I., Weiss, W., and Wood,
C. J.: The Upper Cretaceous succession (Cenomanian–Santonian) of the
Staffhorst Shaft, Lower Saxony, northern Germany: integrated
biostratigraphic, lithostratigraphic and downhole geophysical log data, Acta
Geol. Pol., 49, 175–213, 1999.
Niebuhr, B., Wiese, F., and Wilmsen, M.: The cored Konrad 101 borehole
(Cenomanian–Lower Coniacian, Lower Saxony): calibration of surface and
subsurface log data for the lower Upper Cretaceous of northern Germany,
Cret. Res., 22, 643–674, https://doi.org/10.1006/cres.2001.0283, 2001.
Olszewska, B. and Morgiel, J.: Biostratigraphy of the Polish External
Carpathians based on agglutinated foraminifera, Micropaleontology, 27,
1–24, 1981.
Patterson, R. T., Haggart, J. W., and Dalby, A. P.: A guide to Late
Albian-Cenomanian (Cretaceous) Foraminifera from the Queen Charlotte
Islands, British Columbia, Canada. Paleont. Elec., 13, 1–28, 2010.
Perner, J.: Über die Foraminiferen des böhmischen Cenomans,
Paleontogr. Bohemiae, 1, 65 pp., 1892.
Peryt, D., Lahodynsky, R., and Durakiewicz, T.: Deep-water agglutinated
foraminiferal changes and stable isotope profiles across the
Cretaceous–Paleogene boundary in the Rotwand-graben section, Eastern Alps
(Austria), Palaeogeogr. Palaeocl., 132, 287–307,
https://doi.org/10.1016/S0031-0182(97)00056-4, 1997.
Peryt, D., Alegret, L., and Molina, E.: Agglutinated foraminifers and their
response to the Cretaceous/Paleogene (K/P) boundary event at Aïn
Settara, Tunisia, in: Proc. Sixth
Internat. Worksh. agglut. Foram., edited by: Bubík, M. and Kaminski, M. A., Grzybowski Found. Spec. Publ., 8,
393–412, 2004.
Philip, J. and Floquet, M.: Late Cenomanian (94.7–93.5), in: Atlas Peri-Tethys
palaeogeographical maps, edited by: Dercourt, J.,
Gaetani, M., Vrielynck, B., Barrier, E., Biju-Duval, B., Brunet, M. F.,
Cadet, J. P., Crasquin, S., and Sandulescu, M., CCGM/CGMW, Paris, 129–136, 2000.
Püttmann, T. and Mutterlose, J.: Paleoecology of Late Cretaceous
Coccolithophores: Insights From the Shallow-Marine Record, Paleocean.
Paleoclimat., 36, 1–20, https://doi.org/10.1029/2020PA004161, 2021.
Reuss, A. E.: Geognostische Skizzen aus Böhmen, Bd. 2: Die Kreidegebilde
des westlichen Böhmens, ein monographischer Versuch. Nebst Bemerkungen
über die Braunkohlenlager jenseits der Elbe und eine Uebersicht der
fossilen Fischreste Böhmens, Medau & Comp., Prag, 304 pp., 1844.
Reuss, A. E.: Die Versteinerungen der böhmischen Kreideformation, Mit
Abbildungen der neuen oder weniger bekannten Arten, Abt. 1. Schweizerbart,
Stuttgart, 58 pp., 1845.
Reuss, A. E.: Über die fossilen Foraminiferen und Entomostraceen der
Septarianthone der Umgegend von Berlin, Z. Dt. Geol. Ges., 3, 49–91, 1851.
Reuss, A. E.: Die Foraminiferen der norddeutschen Hils und Gault, Sitz.-Ber.
Akad. Wiss. Wien, mathe.-naturwiss. Klasse, 46, 5–100, 1863.
Robaszynski, F., Gale, A. S., Juignet, P., Amedro, F., and Hardenbol, J.:
Sequence stratigraphy in the Cretaceous series of the Anglo-Paris Basin:
exemplified by the Cenomanian stage, in: Mesozoic and Cenozoic sequence
stratigraphy of European basins, edited by: de Graciansky, P.-C., Hardenbol,
J., Jacquin, T., and Vail, P. R., SEPM Spec. Publ., 60, 363–386, 1998.
Schmidt, U. and Jäger, R.: Bestimmungstabelle für einige
inkrustierende Foraminiferen aus den Unterordnungen Textulariina
und Rotaliina, Zitteliana, 20, 171–178, 1993.
Schubert, R. J.: Neue und interessante Foraminiferen aus dem südtiroler
Alttertiär, Beitr. Paläont. Geol. Österr.-Ungarn Orients, 14,
9–26, 1902.
Schultze, F. E.: Zoologische Ergebnisse der Nordseefahrt vom 21. Juli bis 9.
September 1872: 1. Rhizopoden. J.-Ber. Comm. Wiss. Unter. Dt. Meere, 2–3,
1875.
Seibertz, E.: Geologie der Mergelkalk-Lagerstätte Wunstorf (Oberkreide,
Niedersachsen), Phase IV. Auswertung der Bohrungen aus den Jahren 2011 und
2012, Dr. Moll Bericht 2688/12/11, Isernhagen, 61 pp., https://doi.org/10.13140/RG.2.2.29006.77122, 2013.
Setoyama, E., Kaminski, M. A., and Tyszka, J.: Late Cretaceous agglutinated
foraminifera and implications for the biostratigraphy and palaeobiogeography
of the southwestern Barents Sea, in: Proc. Eighth Internat. Worksh. agglut. Foram., edited by: Kaminski, M. A. and Filipescu, S., Grzybowski Found.
Spec. Publ., 20, 251–309, 2011.
Setoyama, E., Kaminski, M. A., and Tyska, J.: Late Cretaceous–Paleogene
foraminiferal morphogroups as palaeoenvironmental tracers of the rifted
Labrador margin, northern proto-Atlantic, in: Proc. Ninth Internat. Worksh. agglut. Foram., edited by: Kaminski, M. A. and Alegret,
L., Grzybowski Found.
Spec. Publ., 22, 179–220, 2017.
Skelton, P. W.: Introduction to the Cretaceous, in: The
cretaceous world, edited by: Skelton, P. W., Cambridge Univ. Press., 9–41, 2003.
Sliter, W. V.: Upper Cretaceous foraminifera from the southern California
and northwestern Baja California, Mexico, Univ. Kansas Paleont. Contrib., 49, 141 pp., 1968.
Tappan, H.: Foraminifera from the Duck Creek formation of Oklahoma and
Texas, J. Paleont., 17, 467–517, 1943.
Tappan, H.: Cretaceous biostratigraphy of northern Alaska. Bull. Amer.
Assoc. Petroleum Geologists, 44, 273–297, 1960.
Ten Dam, A.: Les foraminifères de l'Albien des Pays-Bas, Soc. géol.
France, 29, 1–66, 1950.
Tyszka, J.: Foraminiferal response to seasonality modulated by orbital
cycles in the Cretaceous mid-latitudes: The Albian record from the Lower
Saxony Basin, Palaeogeogr. Palaeocl., 276, 148–159,
https://doi.org/10.1016/j.palaeo.2009.03.006, 2009.
Tyszka, J. and Thies, A.: Spiroplectinata, key benthic foraminifer genus for
palaeoceanographic reconstruction of the Albian Lower Saxony Basin,
Palaeogeogr. Palaeocl., 174, 199–220,
https://doi.org/10.1016/S0031-0182(01)00294-2, 2001.
Van Den Akker, T. J. H. A., Kaminski, M. A., Gradstein, F. M., and Wood, J.: Campanian to Palaeocene biostratigraphy and palaeoenvironments in the Foula Sub-basin, west of the Shetland Islands, UK, J. Micropalaeontol., 19, 23–43, https://doi.org/10.1144/jm.19.1.23, 2000.
van der Zwaan, G. J., Duijnstee, I. A. P., Dulk, M. den, Ernst, S. R.,
Jannink, N. T., and Kouwenhoven, T. J.: Benthic foraminifers: proxies or
problems? A review of paleocological concepts, Earth-Sci. Rev., 46, 213–236,
1999.
van Helmond, N. A. G. M., Sluijs, A., Sinninghe Damsté, J. S., Reichart, G.-J., Voigt, S., Erbacher, J., Pross, J., and Brinkhuis, H.: Freshwater discharge controlled deposition of Cenomanian–Turonian black shales on the NW European epicontinental shelf (Wunstorf, northern Germany), Clim. Past, 11, 495–508, https://doi.org/10.5194/cp-11-495-2015, 2015.
Vašíċek, M.: Poznámky k mikrobiostratigrafii magurského
flyše na Moravě, Věst. Stát. Geol. Úst. ěsk. Rep.,
22, 235–256, 1947.
Voigt, S. and Hilbrecht, H.: Late Cretaceous carbon isotope stratigraphy in
Europe: correlation and relations with sea level and sediment stability,
Palaeogeogr. Palaeocl., 134, 39–59,
https://doi.org/10.1016/S0031-0182(96)00156-3, 1997.
Voigt, S. and Wiese, F.: Evidence for Late Cretaceous (Late Turonian)
climate cooling from oxygen-isotope variations and palaeobiogeographic
changes in Western and Central Europe, J. Geol. Soc., 157, 737–743,
https://doi.org/10.1144/jgs.157.4.737, 2000.
Voigt, S., Gale, A. S., and Flögel, S.: Midlatitude shelf seas in the
Cenomanian-Turonian greenhouse world: Temperature evolution and North
Atlantic circulation, Paleoceanography, 19, 1–17,
https://doi.org/10.1029/2004PA001015, 2004.
Voigt, S., Gale, A. S., and Voigt, T.: Sea-level change, carbon cycling and
palaeoclimate during the Late Cenomanian of northwest Europe; an integrated
palaeoenvironmental analysis, Cret. Res., 27, 836–858,
https://doi.org/10.1016/j.cretres.2006.04.005, 2006.
Voigt, S., Aurag, A., Leis, F., and Kaplan, U.: Late Cenomanian to Middle
Turonian high-resolution carbon isotope stratigraphy: New data from the
Münsterland Cretaceous Basin, Germany, Earth Planet. Sc. Let., 253,
196–210, https://doi.org/10.1016/j.epsl.2006.10.026, 2007.
Voigt, S., Wagreich, M., Surlyk, F., Walaszczyk, I., Uličný, D., and
Čech, S.: Cretaceous, in: Geology of central Europe, edited by: McCann, T.,
London, The Geological Society, Vol. 2, 923–997, 2008a.
Voigt, S., Erbacher, J., Mutterlose, J., Weiss, W., Westerhold, T., Wiese,
F., Wilmsen, M., and Wonik, T.: The Cenomanian–Turonian of the Wunstorf
section (North Germany): global stratigraphic reference section and new
orbital time scale for Oceanic Anoxic Event 2, Newsl. Strat., 43, 65–89,
2008b.
Voloshina, A.: Ataxophragmeids from Upper Cretaceous Deposits in the
Volyn-Podol Margin of the Russian Platform, Tr. Ukr. NIGRI (Proc. Ukrainian
SSr Geol. Paleont. Inst.), 27, 55–130, 1972.
Waśkowska, A.: Distribution of the agglutinated foraminifer Ammolagena clavata (Jones and
Parker) in Western Tethyan Upper Cretaceous and Paleogene deep-water
deposits (Outer Carpathians, Poland), Micropaleontology, 60, 77–88,
2014.
Waters, J. A.: A group of foraminifera from the Dornick Hills Formation of
the Ardmore Basin, J. Paleont., 1, 129–133, 1927.
Weidich, K. F.: Die kalkalpine Unterkreide und ihre Foraminiferenfauna,
Zitteliana, 17, 1–312, 1990.
Wiese, F.: The Söhlde Formation (Cenomanian, Turonian) of NW Germany:
Shallow Marine Pelagic Red Beds, in: Cretaceous Oceanic Red Beds, edited by: Hu, X., Wang, C., Scott, R. W.,
Wagreich, M., and Jansa, L., Soc. Econ.
Paleontologists Mineralogists Spec. Publ., 91, 153–170, 2009.
Wiese, F. and Voigt, S.: Late Turonian (Cretaceous) climate cooling in
Europe: faunal response and possible causes, Geobios, 35, 65–77,
https://doi.org/10.1016/S0016-6995(02)00010-4, 2002.
Wiese, F., Hiss, M. and Voigt, S.: Söhlde-Formation, in:, Lithostratigraphie der norddeutschen Oberkreide, edited by: Niebuhr, B.,
Hiss, M., Kaplan, U., Tröger, K.-A., Voigt, S., Voigt, T., Wiese, F., and
Wilmsen, M. Schrift.-R.
Dt. Ges. Geowiss., 55, 40–41, 2007.
Wiese, F., Zobel, K., and Keupp, H.: Calcareous dinoflagellate cysts and the
Turonian nutrient crisis – Data from the upper Turonian of the Lower Saxony
Basin (northern Germany), Cret. Res., 56, 673–688,
https://doi.org/10.1016/j.cretres.2015.06.007, 2015.
Wiese, R., Renaudie, J., and Lazarus, D. B.: Testing the accuracy of
genus-level data to predict species diversity in Cenozoic marine diatoms,
Geology, 44, 1051–1054, https://doi.org/10.1130/G38347.1, 2016.
Wilmsen, M.: Sequence stratigraphy and palaeoceanography of the Cenomanian
Stage in northern Germany, Cret. Res., 24, 525–568,
https://doi.org/10.1016/S0195-6671(03)00069-7, 2003.
Wilmsen, M.: Integrated stratigraphy of the upper Lower–lower Middle
Cenomanian of northern Germany and southern England, Acta Geol. Pol., 57,
263–279, 2007.
Wilmsen, M.: An Early Cenomanian (Late Cretaceous) maximum flooding bioevent
in NW Europe: Correlation, sedimentology and biofacies, Palaegeogr.
Palaeocl., 258, 317–333,
https://doi.org/10.1016/j.palaeo.2007.11.007, 2008.
Wilmsen, M.: Origin and significance of Late Cretaceous bioevents: Examples
from the Cenomanian, Acta Palaeont. Pol., 57, 759–771, 2012.
Wilmsen, M. and Hiss, M.: Baddeckenstedt-Formation, in: Lithostratigraphie der norddeutschen Oberkreide, edited by: Niebuhr, B., Hiss,
M., Kaplan, U., Tröger, K.-A., Voigt, S., Voigt, T., Wiese, F., and
Wilmsen, M., Schrift.-R.
Dt. Ges. Geowiss., 55, 32–33, 2007.
Wilmsen, M. and Niebuhr, B.: Stratigraphic revision of the upper Lower and
Middle Cenomanian in the Lower Saxony Basin (northern Germany) with special
reference to the Salzgitter area, Cret. Res., 23, 445–460,
https://doi.org/10.1006/cres.2002.1014, 2002.
Wilmsen, M. and Voigt, T.: The middle–upper Cenomanian of Zilly
(Sachsen-Anhalt, northern Germany) with remarks on the Pycnodonte Event, Acta Geol.
Pol., 56, 17–31, 2006.
Wilmsen, M., Niebuhr, B., and Hiss, M.: The Cenomanian of northern Germany:
facies analysis of a transgressive biosedimentary system, Facies, 51,
242–263, https://doi.org/10.1007/s10347-005-0058-5, 2005.
Wilmsen, M., Niebuhr, B., Wood, C. J., and Zawischa, D.: Fauna and
palaeoecology of the Middle Cenomanian Praeactinocamax primus Event at the type locality, Wunstorf
quarry, northern Germany, Cret. Res., 28, 428–460,
https://doi.org/10.1016/j.cretres.2006.07.004, 2007.
Wilmsen, M., Schumacher, D., and Niebuhr, S.: The early Cenomanian crippsi
Event at Lüneburg (Germany): palaeontological and stratigraphical
significance of a widespread Late Cretaceous bioevent, Palaeobiodiv.
Palaeoenviron., 101, 1–20, 2021.
Short summary
The agglutinated foraminiferal fauna in carbonate rocks from the mid-Cretaceous of Lower Saxony is documented and applied to reconstruct former paleoenvironmental conditions. Especially, sea level fluctuations are possible to reconstruct from changes in the foraminiferal record. Differences of the foraminiferal assemblages in different locations, closer or further away from the former coast, are discussed. Described bio-events of the time interval are linked to foraminiferal bio-events.
The agglutinated foraminiferal fauna in carbonate rocks from the mid-Cretaceous of Lower Saxony...